ﻻ يوجد ملخص باللغة العربية
When a planet transits in front of its host star, a fraction of its light is blocked, decreasing the observed flux from the star. The same is expected to occur when observing the stellar radio flux. However, at radio wavelengths, the planet also radiates, depending on its temperature, and thus modifies the transit depths. We explore this scenario simulating the radio lightcurves of transits of hot-Jupiters, Kepler-17b and WASP-12b, around solar-like stars. We calculated the bremsstrahlung radio emission at 17, 100, and 400 GHz originated from the star, considering a solar atmospheric model. The planetary radio emission was calculated modelling the planets in two scenarios: as a blackbody or with a dense and hot extended atmosphere. In both cases the planet radiates and contributes to the total radio flux. For a blackbody planet, the transit depth is in the order of 2-4% and it is independent of the radio frequency. Hot-Jupiters planets with atmospheres appear bigger and brighter in radio, thus having a larger contribution to the total flux of the system. Therefore, the transit depths are larger than in the case of blackbody planets, reaching up to 8% at 17 GHz. Also the transit depth is frequency-dependent. Moreover, the transit caused by the planet passing behind the star is deeper than when the planet transits in front of the star, being as large as 18% at 400GHz. In all cases, the contribution of the planetary radio emission to the observed flux is evident when the planet transits behind the star.
We report 78 secondary eclipse depths for a sample of 36 transiting hot Jupiters observed at 3.6- and 4.5 microns using the Spitzer Space Telescope. Our eclipse results for 27 of these planets are new, and include highly irradiated worlds such as KEL
We present near infrared high-precision photometry for eight transiting hot Jupiters observed during their predicted secondary eclipses. Our observations were carried out using the staring mode of the WIRCam instrument on the Canada-France-Hawaii Tel
We present high-precision linear polarization observations of four bright hot Jupiter systems ($tau$ Boo, HD 179949, HD 189733 and 51 Peg) and use the data to search for polarized reflected light from the planets. The data for 51 Peg are consistent w
TRAPPIST-1 is a fantastic nearby (~39.14 light years) planetary system made of at least seven transiting terrestrial-size, terrestrial-mass planets all receiving a moderate amount of irradiation. To date, this is the most observationally favourable s
Radiative transfer in planetary atmospheres is usually treated in the static limit, i.e., neglecting atmospheric motions. We argue that hot Jupiter atmospheres, with possibly fast (sonic) wind speeds, may require a more strongly coupled treatment, fo