ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous two peak structure in the Angle-resolved Photoemission Spectra of Ba1-xKxFe2As2

182   0   0.0 ( 0 )
 نشر من قبل Takahiro Shimojima
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic structure near the Fermi level (EF) of Ba1-xKxFe2As2 (BaK122 ; x = 0.2 - 0.7) is studied using laser ultrahigh-resolution angle-resolved photoemission spectroscopy(ARPES). For the optimally doped case of x = 0.4, we clearly observe two peaks below Tc in the ARPES spectra at a binding energies (BE) of 5 meV and 13meV. The former is assigned to a superconducting (SC) coherence peak since it appears and evolves below the bulk SC transition at Tc (= 36 K), accompanying a gap opening centered at EF. In contrast, the latter peak, which appears below ~ 90 K without any gap formation, is interpreted to be not directly related to a SC coherence peak. This high-BE peak is observed from x = 0.2 to 0.6, reduces in energy with overdoping (x > 0.4) and is absent for x = 0.7. The temperature(T)- and doping-dependent ARPES results suggest that the high-BE peak originates from coupling to a bosonic mode of energy ~ 8 meV.

قيم البحث

اقرأ أيضاً

We report the results of a systematic investigation of the phase diagram of the iron-based superconductor, Ba1-xKxFe2As2, from x = 0 to x = 1.0 using high resolution neutron and x-ray diffraction and magnetization measurements. The polycrystalline sa mples were prepared with an estimated compositional variation of Deltax <~ 0.01, allowing a more precise estimate of the phase boundaries than reported so far. At room temperature, Ba1-xKxFe2As2 crystallizes in a tetragonal structure with the space group symmetry of I4/mmm, but at low doping, the samples undergo a coincident first-order structural and magnetic phase transition to an orthorhombic (O) structure with space group Fmmm and a striped antiferromagnet (AF) with space group Fcmmm. The transition temperature falls from a maximum of 139K in the undoped compound to 0K at x = 0.252, with a critical exponent as a function of doping of 0.25(2) and 0.12(1) for the structural and magnetic order parameters, respectively. The onset of superconductivity occurs at a critical concentration of x = 0.130(3) and the superconducting transition temperature grows linearly with x until it crosses the AF/O phase boundary. Below this concentration, there is microscopic phase coexistence of the AF/O and superconducting order parameters, although a slight suppression of the AF/O order is evidence that the phases are competing. At higher doping, superconductivity has a maximum Tc of 38 K at x = 0.4 falling to 3 K at x = 1.0. We discuss reasons for the suppression of the spin-density-wave order and the electron-hole asymmetry in the phase diagram.
We report high resolution angle-resolved photoemission spectroscopy (ARPES) studies of the electronic structure of BaFe$_2$As$_2$, which is one of the parent compounds of the Fe-pnictide superconductors. ARPES measurements have been performed at 20 K and 300 K, corresponding to the orthorhombic antiferromagnetic phase and the tetragonal paramagnetic phase, respectively. Photon energies between 30 and 175 eV and polarizations parallel and perpendicular to the scattering plane have been used. Measurements of the Fermi surface yield two hole pockets at the $Gamma$-point and an electron pocket at each of the X-points. The topology of the pockets has been concluded from the dispersion of the spectral weight as a function of binding energy. Changes in the spectral weight at the Fermi level upon variation of the polarization of the incident photons yield important information on the orbital character of the states near the Fermi level. No differences in the electronic structure between 20 and 300 K could be resolved. The results are compared with density functional theory band structure calculations for the tetragonal paramagnetic phase.
We report a high resolution neutron diffraction investigation of the coupling of structural and magnetic transitions in Ba1xKxFe2As2. The tetragonal-orthorhombic and antiferromagnetic transitions are suppressed with potassium-doping, falling to zero at x <~ 0.3. However, unlike Ba(Fe1xCox)2As2, the two transitions are first-order and coincident over the entire phase diagram, with a biquadratic coupling of the two order parameters. The phase diagram is refined showing that the onset of superconductivity is at x = 0.133 with all three phases coexisting until x >~ 0.24.
We use angle-resolved photoemission with circularly polarized excitation to demonstrate that in the 5x1 superstructure-free Pb-Bi2212 material there are no signatures of time-reversal symmetry breaking in the sense of the criteria developed earlier ( Kaminski et al. Nature {bf 416}, 610 (2002)). In addition to the existing technique, we suggest and apply an independent experimental approach to prove the absence of the effect in the studied compounds. The dichroic signal retains reflection antisymmetry as a function of temperature and doping and in all mirror planes, precisely defined by the experimental dispersion at low energies. The obtained results demonstrate that the signatures of time-reversal symmetry violation in pristine Bi2212, as determined by ARPES, are not a universal feature of all cuprate superconductors.
Recently, angle-resolved photoemission spectroscopy (ARPES) has revealed a dispersion anomaly at high binding energy near 0.3-0.5eV in various families of the high-temperature superconductors. For further studies of this anomaly we present a new two- dimensional fitting-scheme and apply it to high-statistics ARPES data of the strongly-overdoped Bi2Sr2CuO6 cuprate superconductor. The procedure allows us to extract theself-energy in an extended energy and momentum range. It is found that the spectral function of Bi2Sr2CuO6 can be parameterized using a small set of tight-binding parameters and a weakly-momentum-dependent self-energy up to 0.7 eV in binding energy and over the entire first Brillouin zone. Moreover the analysis gives an estimate of the momentum dependence of the matrix element, a quantity, which is often neglected in ARPES analyses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا