ﻻ يوجد ملخص باللغة العربية
We report the results of a systematic investigation of the phase diagram of the iron-based superconductor, Ba1-xKxFe2As2, from x = 0 to x = 1.0 using high resolution neutron and x-ray diffraction and magnetization measurements. The polycrystalline samples were prepared with an estimated compositional variation of Deltax <~ 0.01, allowing a more precise estimate of the phase boundaries than reported so far. At room temperature, Ba1-xKxFe2As2 crystallizes in a tetragonal structure with the space group symmetry of I4/mmm, but at low doping, the samples undergo a coincident first-order structural and magnetic phase transition to an orthorhombic (O) structure with space group Fmmm and a striped antiferromagnet (AF) with space group Fcmmm. The transition temperature falls from a maximum of 139K in the undoped compound to 0K at x = 0.252, with a critical exponent as a function of doping of 0.25(2) and 0.12(1) for the structural and magnetic order parameters, respectively. The onset of superconductivity occurs at a critical concentration of x = 0.130(3) and the superconducting transition temperature grows linearly with x until it crosses the AF/O phase boundary. Below this concentration, there is microscopic phase coexistence of the AF/O and superconducting order parameters, although a slight suppression of the AF/O order is evidence that the phases are competing. At higher doping, superconductivity has a maximum Tc of 38 K at x = 0.4 falling to 3 K at x = 1.0. We discuss reasons for the suppression of the spin-density-wave order and the electron-hole asymmetry in the phase diagram.
We report a high resolution neutron diffraction investigation of the coupling of structural and magnetic transitions in Ba1xKxFe2As2. The tetragonal-orthorhombic and antiferromagnetic transitions are suppressed with potassium-doping, falling to zero
We present a thermodynamic study of the phase diagram of single-crystal Ba1-xKxFe2As2 using specific heat measurements. In zero-magnetic field a clear step in the heat capacity of deltaC/Tc = 0.1 J/f.u.K2 is observed at Tc = 34.6K for a sample with x
We report inelastic neutron scattering measurements of the resonant spin excitations in Ba1-xKxFe2As2 over a broad range of electron band filling. The fall in the superconducting transi- tion temperature with hole doping coincides with the magnetic e
The recent discovery of superconductivity in oxypnictides with the critical temperature (TC) higher than McMillan limit of 39 K (the theoretical maximum predicted by Bardeen-Cooper-Schrieffer (BCS) theory) has generated great excitement. Theoretical
We performed a Laser angle-resolved photoemission spectroscopy (ARPES) study on a wide doping range of Ba1-xKxFe2As2 (BaK) and precisely determined the doping evolution of the superconducting (SC) gaps in this compound. The gap size of the outer hole