ترغب بنشر مسار تعليمي؟ اضغط هنا

Doping-Dependent and Orbital-Dependent Band Renormalization in Ba(Fe_1-xCo_x)_2As_2 Superconductors

70   0   0.0 ( 0 )
 نشر من قبل Takashi Mizokawa
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Angle resolved photoemission spectroscopy of Ba(Fe1-xCox)2As2 (x = 0.06, 0.14, and 0.24) shows that the width of the Fe 3d yz/zx hole band depends on the doping level. In contrast, the Fe 3d x^2-y^2 and 3z^2-r^2 bands are rigid and shifted by the Co doping. The Fe 3d yz/zx hole band is flattened at the optimal doping level x = 0.06, indicating that the band renormalization of the Fe 3d yz/zx band correlates with the enhancement of the superconducting transition temperature. The orbital-dependent and doping-dependent band renormalization indicates that the fluctuations responsible for the superconductivity is deeply related to the Fe 3d orbital degeneracy.

قيم البحث

اقرأ أيضاً

201 - T. Xiang , H. G. Luo , D. H. Lu 2008
Based on the analysis of the measurement data of angle-resolved photoemission spectroscopy (ARPES) and optics, we show that the charge transfer gap is significantly smaller than the optical one and is reduced by doping in electron doped cuprate super conductors. This leads to a strong charge fluctuation between the Zhang-Rice singlet and the upper Hubbard bands. The basic model for describing this system is a hybridized two-band $t$-$J$ model. In the symmetric limit where the corresponding intra- and inter-band hopping integrals are equal to each other, this two-band model is equivalent to the Hubbard model with an antiferromagnetic exchange interaction (i.e. the $t$-$U$-$J$ model). The mean-field result of the $t$-$U$-$J$ model gives a good account for the doping evolution of the Fermi surface and the staggered magnetization.
74 - Zhi Wang , Huaiming Guo , 2008
Within the framework of the kinetic energy driven superconducting mechanism, the effect of the extended impurity scatterers on the quasiparticle transport of cuprate superconductors in the superconducting state is studied based on the nodal approxima tion of the quasiparticle excitations and scattering processes. It is shown that there is a cusplike shape of the energy dependent microwave conductivity spectrum. At low temperatures, the microwave conductivity increases linearly with increasing temperatures, and reaches a maximum at intermediate temperature, then decreases with increasing temperatures at high temperatures. In contrast with the dome shape of the doping dependent superconducting gap parameter, the minimum microwave conductivity occurs around the optimal doping, and then increases in both underdoped and overdoped regimes.
We discuss the influence of momentum-dependent correlations on the superconducting gap structure in iron-based superconductors. Within the weak coupling approach including self-energy effects at the one-loop spin-fluctuation level, we construct a dim ensionless pairing strength functional which includes the effects of quasiparticle renormalization. The stationary solution of this equation determines the gap function at $T_c$. The resulting equations represent the simplest generalization of spin fluctuation pairing theory to include the effects of an anisotropic quasiparticle weight. We obtain good agreement with experimentally observed anisotropic gap structures in LiFeAs, indicating that the inclusion of quasiparticle renormalization effects in the existing weak-coupling theories can account for the observed anomalies in the gap structure of Fe-based superconductors.
106 - Zhongkai Liu , Ming Yi , Yan Zhang 2015
The level of electronic correlation has been one of the key questions in understanding the nature of superconductivity. Among the iron-based superconductors, the iron chalcogenide family exhibits the strongest electron correlations. To gauge the corr elation strength, we performed systematic angle-resolved photoemission spectroscopy study on the iron chalcogenide series Fe$_{1+y}$Se$_x$Te$_{1-x}$ (0$<$x$<$0.59), a model system with the simplest structure. Our measurement reveals an incoherent to coherent crossover in the electronic structure as the selenium ratio increases and the system evolves from the weakly localized to more itinerant state. Furthermore, we found that the effective mass of bands dominated by the d$_{xy}$ orbital character significantly decreases with increasing selenium ratio, as compared to the d$_{xz}$/d$_{yz}$ orbital-dominated bands. The orbital dependent change in the correlation level agrees with theoretical calculations on the band structure renormalization, and may help to understand the onset of superconductivity in Fe$_{1+y}$Se$_x$Te$_{1-x}$.
Understanding the interplay between charge order (CO) and other phenomena (e.g. pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. Here, we use resonant x-ray scattering to measure the charge order correlations in electron-doped cuprates (La2-xCexCuO4 and Nd2-xCexCuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity. Detailed measurements of Nd2-xCexCuO4 show that CO is present in the x = 0.059 to 0.166 range, and that its doping dependent wavevector is consistent with the separation between straight segments of the Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166, but decreases at lower doping levels, indicating that it is not tied to the appearance of antiferromagnetic correlations or the pseudogap. Near optimal doping, where the CO wavevector is also consistent with a previously observed phonon anomaly, measurements of the CO below and above the superconducting transition temperature, or in a magnetic field, show that the CO is insensitive to superconductivity. Overall these findings indicate that, while verified in the electron-doped cuprates, material-dependent details determine whether the CO correlations acquire sufficient strength to compete for the ground state of the cuprates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا