ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of elastic anomalies driven by coexisting dynamical spin Jahn-Teller effect and dynamical molecular spin state in paramagnetic phase of the frustrated MgCr$_2$O$_4$$

69   0   0.0 ( 0 )
 نشر من قبل Tadataka Watanabe
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultrasound velocity measurements of magnesium chromite spinel MgCr$_2$O$_4$ reveal elastic anomalies in the paramagnetic phase that are characterized as due to geometrical frustration. The temperature dependence of the tetragonal shear modulus $(C_{11}-C_{12})/2$ exhibits huge Curie-type softening, which should be the precursor to spin Jahn-Teller distortion in the antiferromagnetic phase. The trigonal shear modulus $C_{44}$ exhibits nonmonotonic temperature dependence with a characteristic minimum at $sim$50 K, indicating a coupling of the lattice to dynamical molecular spin state. These results strongly suggest the coexistence of dynamical spin Jahn-Teller effect and dynamical molecular spin state in the paramagnetic phase, which is compatible with the coexistence of magnetostructural order and dynamical molecular spin state in the antiferromagnetic phase.

قيم البحث

اقرأ أيضاً

Ultrasound velocity measurements were performed on a single crystal of spin-frustrated ferrite spinel ZnFe$_2$O$_4$ from 300 K down to 2 K. In this cubic crystal, all the symmetrically-independent elastic moduli exhibit softening with a characteristi c minimum with decreasing temperature below $sim$100 K. This elastic anomaly suggests a coupling between dynamical lattice deformations and molecular-spin excitations. In contrast, the elastic anomalies, normally driven by the magnetostructural phase transition and its precursor, are absent in ZnFe$_2$O$_4$, suggesting that the spin-lattice coupling cannot play a role in relieving frustration within this compound. The present study infers that, for ZnFe$_2$O$_4$, the dynamical molecular-spin state evolves at low temperatures without undergoing precursor spin-lattice fluctuations and spin-lattice ordering. It is expected that ZnFe$_2$O$_4$ provides the unique dynamical spin-lattice liquid-like system, where not only the spin molecules but also the cubic lattice fluctuate spatially and temporally.
Ultrasound velocity measurements of cubic spinel GeCo$_2$O$_4$ in single crystal were performed for the investigation of shear and compression moduli. The shear moduli in the paramagnetic state reveal an absence of Jahn-Teller activity despite the pr esence of orbital degeneracy in the Co$^{2+}$ ions. Such a Jahn-Teller inactivity indicates that the intersite orbital-orbital interaction is much stronger than the Jahn-Teller coupling. The compression moduli in the paramagnetic state near the N$acute{e}$el temperature $T_N$ reveal that the most relevant exchange path for the antiferromagnetic transition lies in the [111] direction. This exchange-path anisotropy is consistent with the antiferromagnetic structure with the wave vector $q parallel$ [111], suggesting the presence of bond frustration due to competition among a direct ferromagnetic and several distant-neighbors antiferromagnetic interactions. In the JT-inactive condition, the bond frustration can be induced by geometrical orbital frustration of $t_{2g}$-$t_{2g}$ interaction between the Co$^{2+}$ ions which can be realized in the pyrochlore lattice of the high spin Co$^{2+}$ with $t_{2g}$-orbital degeneracy. In GeCo$_2$O$_4$, the tetragonal elongation below $T_N$ releases the orbital frustration by quenching the orbital degeneracy.
Ultrasound velocity measurements of the orbitally-frustrated GeCo$_2$O$_4$ reveal unusual elastic instabilities due to the phonon-spin coupling within the antiferromagnetic phase. Shear moduli exhibit anomalies arising from the coupling to short-rang e ferromagnetic excitations. Diplike anomalies in the magnetic-field dependence of elastic moduli reveal magnetic-field-induced orbital order-order transitions. These results strongly suggest the presence of geometrical orbital frustration which causes novel orbital phenomena within the antiferromagnetic phase.
The low-dimensional s=1/2 compound (NO)[Cu(NO3)3] has recently been suggested to follow the Nersesyan-Tsvelik model of coupled spin chains. Such a system shows unbound spinon excitations and a resonating valence bond ground state due spin frustration . Our Raman scattering study demonstrates phonon anomalies as well as the suppression of a broad magnetic scattering continuum for temperatures below a characteristic temperature, T<T*=100K. We interpret these effects as evidence for a dynamical interplay of spin and lattice degrees of freedom that might lead to a further transition into a dimerized or structurally distorted phase at lower temperatures.
We consider the superexchange in `frustrated Jahn-Teller systems, such as the transition metal oxides NaNiO_2, LiNiO_2, and ZnMn_2O_4, in which transition metal ions with doubly degenerate orbitals form a triangular or pyrochlore lattice and are conn ected by the 90-degree metal-oxygen-metal bonds. We show that this interaction is much different from a more familiar exchange in systems with the 180-degree bonds, e.g. perovskites. In contrast to the strong interplay between the orbital and spin degrees of freedom in perovskites, in the 90-degree exchange systems spins and orbitals are decoupled: the spin exchange is much weaker than the orbital one and it is ferromagnetic for all orbital states. Due to frustration, the mean-field orbital ground state is strongly degenerate. Quantum orbital fluctuations select particular ferro-orbital states, such as the one observed in NaNiO_2. We also discuss why LiNiO_2 may still behave as an orbital liquid.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا