ﻻ يوجد ملخص باللغة العربية
Metallic oxides encased within Metal-Insulator-Metal (MIM) structures can demonstrate both unipolar and bipolar switching mechanisms, rendering them the capability to exhibit a multitude of resistive states and ultimately function as memory elements. Identifying the vital physical mechanisms behind resistive switching can enable these devices to be utilized more efficiently, reliably and in the long-term. In this paper, we present a new approach for analysing resistive switching by modelling the active core of two terminal devices as 2D and 3D grid circuit breaker networks. This model is employed to demonstrate that substantial resistive switching can only be supported by the formation of continuous current percolation channels, while multi-state capacity is ascribed to the establishment and annihilation of multiple channels.
Superlattices may play an important role in next generation electronic and spintronic devices if the key-challenge of the reading and writing data can be solved. This challenge emerges from the coupling of low dimensional individual layers with macro
We extend results by Stotland and Di Ventra on the phenomenon of resistive switching aided by noise. We further the analysis of the mechanism underlying the beneficial role of noise and study the EPIR (Electrical Pulse Induced Resistance) ratio depen
The charge-current-induced spin polarization is a key property of topological insulators for their applications in spintronics. However, topological surface states are expected to give rise to only one type of spin polarization for a given current di
We study the effect of external noise on resistive switching. Experimental results on a manganite sample are presented showing that there is an optimal noise amplitude that maximizes the contrast between high and low resistive states. By means of num
The integration of diverse electronic phenomena, such as magnetism and nontrivial topology, into a single system is normally studied either by seeking materials that contain both ingredients, or by layered growth of contrasting materials. The ability