ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling of Current Percolation Channels in Emerging Resistive Switching Elements

239   0   0.0 ( 0 )
 نشر من قبل Marcus Wu Shihong
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Metallic oxides encased within Metal-Insulator-Metal (MIM) structures can demonstrate both unipolar and bipolar switching mechanisms, rendering them the capability to exhibit a multitude of resistive states and ultimately function as memory elements. Identifying the vital physical mechanisms behind resistive switching can enable these devices to be utilized more efficiently, reliably and in the long-term. In this paper, we present a new approach for analysing resistive switching by modelling the active core of two terminal devices as 2D and 3D grid circuit breaker networks. This model is employed to demonstrate that substantial resistive switching can only be supported by the formation of continuous current percolation channels, while multi-state capacity is ascribed to the establishment and annihilation of multiple channels.



قيم البحث

اقرأ أيضاً

Superlattices may play an important role in next generation electronic and spintronic devices if the key-challenge of the reading and writing data can be solved. This challenge emerges from the coupling of low dimensional individual layers with macro scopic world. Here we report the study of the resistive switching characteristics of a of hybrid structure made out of a superlattice with ultrathin layers of two ferromagnetic metallic oxides, La0.7Sr0.3MnO3 (LSMO) and SrRuO3 (SRO). Bipolar resistive switching memory effects are measured on these LSMO/SRO superlattices, and the observed switching is explainable by ohmic and space charge-limited conduction laws. It is evident from the endurance characteristics that the on/off memory window of the cell is greater than 14, which indicates that this cell can reliably distinguish the stored information between high and low resistance states. The findings may pave a way to the construction of devices based on nonvolatile resistive memory effects.
We extend results by Stotland and Di Ventra on the phenomenon of resistive switching aided by noise. We further the analysis of the mechanism underlying the beneficial role of noise and study the EPIR (Electrical Pulse Induced Resistance) ratio depen dence with noise power. In the case of internal noise we find an optimal range where the EPIR ratio is both maximized and independent of the preceding resistive state. However, when external noise is considered no beneficial effect is observed.
The charge-current-induced spin polarization is a key property of topological insulators for their applications in spintronics. However, topological surface states are expected to give rise to only one type of spin polarization for a given current di rection, which has been a limiting factor for spin manipulations. Here we report that in devices based on the bulk-insulating topological insulator BiSbTeSe2, an unexpected switching of spin polarization was observed upon changing the chemical potential. The spin polarization expected from the topological surface states was detected in a heavily electron-doped device, whereas the opposite polarization was reproducibly observed in devices with low carrier densities. We propose that the latter type of spin polarization stems from topologically-trivial two-dimensional states with a large Rashba spin splitting, which are caused by a strong band bending at the surface of BiSbTeSe2 beneath the ferromagnetic electrode used as a spin detector. This finding paves the way for realizing the spin transistor operation in future topological spintronic devices.
We study the effect of external noise on resistive switching. Experimental results on a manganite sample are presented showing that there is an optimal noise amplitude that maximizes the contrast between high and low resistive states. By means of num erical simulations, we study the causes underlying the observed behavior. We find that experimental results can be related to general characteristics of the equations governing the system dynamics.
The integration of diverse electronic phenomena, such as magnetism and nontrivial topology, into a single system is normally studied either by seeking materials that contain both ingredients, or by layered growth of contrasting materials. The ability to simply stack very different two dimensional (2D) van der Waals materials in intimate contact permits a different approach. Here we use this approach to couple the helical edges states in a 2D topological insulator, monolayer WTe2, to a 2D layered antiferromagnet, CrI3. We find that the edge conductance is sensitive to the magnetization state of the CrI3, and the coupling can be understood in terms of an exchange field from the nearest and next-nearest CrI3 layers that produces a gap in the helical edge. We also find that the nonlinear edge conductance depends on the magnetization of the nearest CrI3 layer relative to the current direction. At low temperatures this produces an extraordinarily large nonreciprocal current that is switched by changing the antiferromagnetic state of the CrI3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا