ﻻ يوجد ملخص باللغة العربية
X-ray diffraction (XRD) and Mossbauer spectroscopy techniques combined with theoretical calculations based on the Korringa-Kohn-Rostoker (KKR) electronic structure calculation method were used to investigate sigma-phase Fe_{100-x}Re_{x} alloys (x = 43, 45, 47, 49 and 53). Structural data such as site occupancies and lattice constants were derived from the XRD patters, while the average isomer shift and distribution curves of the quadrupole splitting were obtained from the Mossbauer spectra. Fe-site charge-densities and the quadrupole splittings were computed with the KKR method for each lattice site. The calculated quantities combined with the experimentally determined site occupancies were successfully used to decompose the measured Mossbauer spectra into five components corresponding to the five sublattices.
Experimental investigation as well as theoretical calculations, of the Fe-partial phonon density-of-states (DOS) for nominally Fe_52.5Cr_47.5 alloy having (a) alpha- and (b) sigma-phase structure were carried out. The former at sector 3-ID of the Adv
Sigma-phase intermetallic compound of Fe54Cr46 was investigated using DC and AC magnetic susceptibility techniques. A clear-cut evidence was found that the sample orders magnetically at Tc=23.5 K and its ground magnetic state is constituted by a spin
Fe-doped ZnO nanocrystals are successfully synthesized and structurally characterized by using x-ray diffraction and transmission electron microscopy. Magnetization measurements on the same system reveal a ferromagnetic to paramagnetic transition tem
Formation energy of the sigma-phase in the Fe-V alloy system, Delta E, was computed in the full compositional range of its occurrence (34 < x < 60) using the electronic band structure calculations by means of the KKR method. Delta E-values were found
We predict the existence of a new ferromagnetic shape memory alloy Ga_2MnNi using density functional theory. The martensitic start temperature (T_M) is found to be approximately proportional to the stabilization energy of the martensitic phase (delta