ترغب بنشر مسار تعليمي؟ اضغط هنا

Ferromagnetism in Fe-doped ZnO Nanocrystals: Experimental and Theoretical investigations

100   0   0.0 ( 0 )
 نشر من قبل Debjani Karmakar
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fe-doped ZnO nanocrystals are successfully synthesized and structurally characterized by using x-ray diffraction and transmission electron microscopy. Magnetization measurements on the same system reveal a ferromagnetic to paramagnetic transition temperature > 450 K with a low-temperature transition from ferromagnetic to spin-glass state due to canting of the disordered surface spins in the nanoparticle system. Local magnetic probes like EPR and Mossbauer indicate the presence of Fe in both valence states Fe2+ and Fe3+. We argue that the presence of Fe3+ is due to the possible hole doping in the system by cation (Zn) vacancies. In a successive ab-initio electronic structure calculation, the effects of defects (e.g. O- and Zn-vacancy) on the nature and origin of ferromagnetism are investigated for Fe-doped ZnO system. Electronic structure calculations suggest hole doping (Zn-vacancy) to be more effective to stabilize ferromagnetism in Fe doped ZnO and our results are consistent with the experimental signature of hole doping in the ferromagnetic Fe doped ZnO samples.

قيم البحث

اقرأ أيضاً

71 - H.Y. He , J. Hu , B.C. Pan 2009
Based on density functional theory calculations, we systematically investigate the behaviors of a H atom in Ag-doped ZnO, involving the preference sites, diffusion behaviors, the electronic structures and vibrational properties. We find that a H atom can migrate to the doped Ag to form a Ag-H complex by overcoming energy barriers of 0.3 - 1.0 eV. The lowest-energy site for H location is the bond center of a Ag-O in the basal plane. Moreover, H can migrate between this site and its equivalent sites with energy cost of less than 0.5 eV. In contrast, dissociation of such a Ag-H complex needs energy of about 1.1 - 1.3 eV. This implies that the Ag-H complexes can commonly exist in the Ag-doped ZnO, which have a negative effect on the desirable p-type carrier concentrations of Ag-doped ZnO. In addition, based on the frozen phonon calculation, the vibrational properties of ZnO with a Ag-H complex are predicted. Some new vibrational modes associated with the Ag-H complex present in the vibrational spectrum of the system.
Magnetic 3d-ions doped into wide-gap oxides show signatures of room temperature ferromagnetism, although their concentration is two orders of magnitude smaller than that in conventional magnets. The prototype of these exceptional materials is Co-dope d ZnO, for which an explanation of the room temperature ferromagnetism is still elusive. Here we demonstrate that magnetism originates from Co2+ oxygen-vacancy pairs with a partially filled level close to the ZnO conduction band minimum. The magnetic interaction between these pairs is sufficiently long-ranged to cause percolation at moderate concentrations. However, magnetically correlated clusters large enough to show hysteresis at room temperature already form below the percolation threshold and explain the current experimental findings. Our work demonstrates that the magnetism in ZnO:Co is entirely governed by intrinsic defects and a phase diagram is presented. This suggests a recipe for tailoring the magnetic properties of spintronics materials by controlling their intrinsic defects.
The nature of the often reported room temperature ferromagnetism in transition metal doped oxides is still a matter of huge debate. Herein we report on room temperature ferromagnetism in high quality Co-doped ZnO (Zn1-xCoxO) bulk samples synthesized via standard solid-state reaction route. Reference paramagnetic Co-doped ZnO samples with low level of structural defects are subjected to heat treatments in a reductive atmosphere in order to introduce defects in the samples in a controlled way. A detailed structural analysis is carried out in order to characterize the induced defects and their concentration. The magnetometry revealed the coexistence of a paramagnetic and a ferromagnetic phase at room temperature in straight correlation with the structural properties. The saturation magnetization is found to increase with the intensification of the heat treatment, and, therefore, with the increase of the density of induced defects. The magnetic behavior is fully explained in terms of the bound magnetic polaron model. Based on the experimental findings, supported by theoretical calculations, we attribute the origin of the observed defect-induced-ferromagnetism to the ferromagnetic coupling between the Co ions mediated by magnetic polarons due to zinc interstitial defects.
We studied structural, optical and magnetic properties of high-quality 5 and 15% Co-doped ZnO films grown by plasma-assisted molecular beam epitaxy (MBE) on (0001)-sapphire substrates. Magnetic force microscopy (MFM) and magnetic measurements with SQ UID magnetometer show clear ferromagnetic behavior of the films up to room temperature whereas they are antiferromagnetic below 200 K approximately. Temperature dependence of the carrier mobility was determined using Raman line shape analysis of the longitudinal-optical-phonon-plasmon coupled modes. It shows that the microscopic mechanism for ferromagnetic ordering is coupling mediated by free electrons between spins of Co atoms. These results bring insight into a subtle interplay between charge carriers and magnetism in MBE-grown Zn(1-x)CoxO films.
Unexpected ferromagnetism has been observed in carbon doped ZnO films grown by pulsed laser deposition [Phys. Rev. Lett. 99, 127201 (2007)]. In this letter, we introduce carbon into ZnO films by ion implantation. Room temperature ferromagnetism has b een observed. Our analysis demonstrates that (1) C-doped ferromagnetic ZnO can be achieved by an alternative method, i.e. ion implantation, and (2) the chemical involvement of carbon in the ferromagnetism is indirectly proven.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا