ﻻ يوجد ملخص باللغة العربية
Fe-doped ZnO nanocrystals are successfully synthesized and structurally characterized by using x-ray diffraction and transmission electron microscopy. Magnetization measurements on the same system reveal a ferromagnetic to paramagnetic transition temperature > 450 K with a low-temperature transition from ferromagnetic to spin-glass state due to canting of the disordered surface spins in the nanoparticle system. Local magnetic probes like EPR and Mossbauer indicate the presence of Fe in both valence states Fe2+ and Fe3+. We argue that the presence of Fe3+ is due to the possible hole doping in the system by cation (Zn) vacancies. In a successive ab-initio electronic structure calculation, the effects of defects (e.g. O- and Zn-vacancy) on the nature and origin of ferromagnetism are investigated for Fe-doped ZnO system. Electronic structure calculations suggest hole doping (Zn-vacancy) to be more effective to stabilize ferromagnetism in Fe doped ZnO and our results are consistent with the experimental signature of hole doping in the ferromagnetic Fe doped ZnO samples.
Based on density functional theory calculations, we systematically investigate the behaviors of a H atom in Ag-doped ZnO, involving the preference sites, diffusion behaviors, the electronic structures and vibrational properties. We find that a H atom
Magnetic 3d-ions doped into wide-gap oxides show signatures of room temperature ferromagnetism, although their concentration is two orders of magnitude smaller than that in conventional magnets. The prototype of these exceptional materials is Co-dope
The nature of the often reported room temperature ferromagnetism in transition metal doped oxides is still a matter of huge debate. Herein we report on room temperature ferromagnetism in high quality Co-doped ZnO (Zn1-xCoxO) bulk samples synthesized
We studied structural, optical and magnetic properties of high-quality 5 and 15% Co-doped ZnO films grown by plasma-assisted molecular beam epitaxy (MBE) on (0001)-sapphire substrates. Magnetic force microscopy (MFM) and magnetic measurements with SQ
Unexpected ferromagnetism has been observed in carbon doped ZnO films grown by pulsed laser deposition [Phys. Rev. Lett. 99, 127201 (2007)]. In this letter, we introduce carbon into ZnO films by ion implantation. Room temperature ferromagnetism has b