ﻻ يوجد ملخص باللغة العربية
We present thermal and electrical transport measurements of low-density (10$^{14}$ m$^{-2}$), mesoscopic two-dimensional electron systems (2DESs) in GaAs/AlGaAs heterostructures at sub-Kelvin temperatures. We find that even in the supposedly strongly localised regime, where the electrical resistivity of the system is two orders of magnitude greater than the quantum of resistance $h/e^2$, the thermopower decreases linearly with temperature indicating metallicity. Remarkably, the magnitude of the thermopower exceeds the predicted value in non-interacting metallic 2DESs at similar carrier densities by over two orders of magnitude. Our results indicate a new quantum state and possibly a novel class of itinerant quasiparticles in dilute 2DESs at low temperatures where the Coulomb interaction plays a pivotal role.
We report thermopower ($S$) and electrical resistivity ($rho_{2DES}$) measurements in low-density (10$^{14}$ m$^{-2}$), mesoscopic two-dimensional electron systems (2DESs) in GaAs/AlGaAs heterostructures at sub-Kelvin temperatures. We observe at temp
We show that the merging of the spin- and valley-split Landau levels at the chemical potential is an intrinsic property of a strongly-interacting two-dimensional electron system in silicon. Evidence for the level merging is given by available experimental data.
Experimental results on the metal-insulator transition and related phenomena in strongly interacting two-dimensional electron systems are discussed. Special attention is given to recent results for the strongly enhanced spin susceptibility, effective
With decreasing density $n_s$ the thermopower $S$ of a low-disorder 2D electron system in silicon is found to exhibit a sharp increase by more than an order of magnitude, tending to a divergence at a finite, disorder-independent density $n_t$ consist
The magnetic field of complete spin polarization is calculated in a disorderless single-valley strongly-interacting 2D electron system. In the metallic region above the Wigner-Mott transition, non-equilibrium spin states are predicted, which should give rise to hysteresis in the magnetization.