ﻻ يوجد ملخص باللغة العربية
With decreasing density $n_s$ the thermopower $S$ of a low-disorder 2D electron system in silicon is found to exhibit a sharp increase by more than an order of magnitude, tending to a divergence at a finite, disorder-independent density $n_t$ consistent with the critical form $(-T/S) propto (n_s-n_t)^x$ with $x=1.0pm 0.1$ ($T$ is the temperature). Our results provide clear evidence for an interaction-induced transition to a new phase at low density in a strongly-interacting 2D electron system.
The magnetic field of complete spin polarization is calculated in a disorderless single-valley strongly-interacting 2D electron system. In the metallic region above the Wigner-Mott transition, non-equilibrium spin states are predicted, which should give rise to hysteresis in the magnetization.
The increase in the resistivity with decreasing temperature followed by a drop by more than one order of magnitude is observed on the metallic side near the zero-magnetic-field metal-insulator transition in a strongly interacting two-dimensional elec
We show that the merging of the spin- and valley-split Landau levels at the chemical potential is an intrinsic property of a strongly-interacting two-dimensional electron system in silicon. Evidence for the level merging is given by available experimental data.
We present thermal and electrical transport measurements of low-density (10$^{14}$ m$^{-2}$), mesoscopic two-dimensional electron systems (2DESs) in GaAs/AlGaAs heterostructures at sub-Kelvin temperatures. We find that even in the supposedly strongly
We report thermopower ($S$) and electrical resistivity ($rho_{2DES}$) measurements in low-density (10$^{14}$ m$^{-2}$), mesoscopic two-dimensional electron systems (2DESs) in GaAs/AlGaAs heterostructures at sub-Kelvin temperatures. We observe at temp