ترغب بنشر مسار تعليمي؟ اضغط هنا

Resolved stellar population of distant galaxies in the ELT era

188   0   0.0 ( 0 )
 نشر من قبل Simone Zaggia R.
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The expected imaging capabilities of future Extremely Large Telescopes (ELTs) will offer the unique possibility to investigate the stellar population of distant galaxies from the photometry of the stars in very crowded fields. Using simulated images and photometric analysis we explore here two representative science cases aimed at recovering the characteristics of the stellar populations in the inner regions of distant galaxies. Specifically: case A) at the center of the disk of a giant spiral in the Centaurus Group, (mu B~21, distance of 4.6 Mpc); and, case B) at half of the effective radius of a giant elliptical in the Virgo Cluster (mu~19.5, distance of 18 Mpc). We generate synthetic frames by distributing model stellar populations and adopting a representative instrumental set up, i.e. a 42 m Telescope operating close to the diffraction limit. The effect of crowding is discussed in detail showing how stars are measured preferentially brighter than they are as the confusion limit is approached. We find that (i) accurate photometry (sigma~0.1, completeness >90%) can be obtained for case B) down to I~28.5, J~27.5 allowing us to recover the stellar metallicity distribution in the inner regions of ellipticals in Virgo to within ~0.1 dex; (ii) the same photometric accuracy holds for the science case A) down to J~28.0, K~27.0, enabling to reconstruct of the star formation history up to the Hubble time via simple star counts in diagnostic boxes. For this latter case we discuss the possibility of deriving more detailed information on the star formation history from the analysis of their Horizontal Branch stars. We show that the combined features of high sensitivity and angular resolution of ELTs may open a new era for our knowledge of the stellar content of galaxies of different morphological type up to the distance of the Virgo cluster.



قيم البحث

اقرأ أيضاً

The collection of planetary system properties derived from large surveys such as Kepler provides critical constraints on planet formation and evolution. These constraints can only be applied to planet formation models, however, if the observational b iases and selection effects are properly accounted for. Here we show how epos, the Exoplanet Population Observation Simulator, can be used to constrain planet formation models by comparing the Bern planet population synthesis models to the Kepler exoplanetary systems. We compile a series of diagnostics, based on occurrence rates of different classes of planets and the architectures of multi-planet systems, that can be used as benchmarks for future and current modeling efforts. Overall, we find that a model with 100 seed planetary cores per protoplanetary disk provides a reasonable match to most diagnostics. Based on these diagnostics we identify physical properties and processes that would result in the Bern model more closely matching the known planetary systems. These are: moving the planet trap at the inner disk edge outward; increasing the formation efficiency of mini-Neptunes; and reducing the fraction of stars that form observable planets. We conclude with an outlook on the composition of planets in the habitable zone, and highlight that the majority of simulated planets smaller than 1.7 Earth radii have substantial hydrogen atmospheres. The software used in this paper is available online for public scrutiny at https://github.com/GijsMulders/epos
Aims. In this work we aim to estimate the lowest stellar mass that MICADO at the ELT will be able to reliably detect given a stellar density and distance. We also show that instrumental effects that will play a critical role, and report the number of young clusters that will be accessible for IMF studies in the local Universe with the ELT. Methods. We used SimCADO, the instrument simulator package for the MICADO camera, to generate observations of 56 dense stellar regions with densities similar to the cores of young stellar clusters. We placed the cluster fields at distances between 8 kpc and 5 Mpc from the Earth, implying core densities from 10^2 to 10^5 stars arcsec^-2, and determined the lowest reliably observable mass for each stellar field through point-spread function (PSF) fitting photometry. Results. Our results show that stellar densities of <10^3 stars arcsec^-2 will be easily resolvable by MICADO. The lowest reliably observable mass in the Large Magellanic Cloud will be around 0.1 Msun for clusters with densities <10^3 stars arcsec^-2. MICADO will be able to access the stellar content of the cores of all dense young stellar clusters in the Magellanic Clouds, allowing the peak and shape of the IMF to be studied in great detail outside the Milky Way. At a distance of 2 Mpc, all stars with M > 2 Msun will be resolved in fields of <10^4 stars arcsec^-2 , allowing the high-mass end of the IMF to be studied in all galaxies out to and including NGC300.
136 - Jarle Brinchmann 2009
The stellar populations of galaxies contain a wealth of detailed information. From the youngest, most massive stars, to almost invisible remnants, the history of star formation is encoded in the stars that make up a galaxy. Extracting some, or all, of this informationhas long been a goal of stellar population studies. This was achieved in the last couple of decades and it is now a routine task, which forms a crucial ingredient in much of observational galaxy evolution, from our Galaxy out to the most distant systems found. In many of these domains we are now limited not by sample size, but by systematic uncertainties and this will increasingly be the case in the future. The aim of this review is to outline the challenges faced by stellar population studies in the coming decade within the context of upcoming observational facilities. I will highlight the need to better understand the near-IR spectral range and outline the difficulties presented by less well understood phases of stellar evolution such as thermally pulsing AGB stars, horizontal branch stars and the very first stars. The influence of rotation and binarity on stellar population modeling is also briefly discussed.
84 - F. Hammer 2020
The powerful combination of the cutting-edge multi-object spectrograph MOSAIC with the world largest telescope, the ELT, will allow us to probe deeper into the Universe than was possible. MOSAIC is an extremely efficient instrument in providing spect ra for the numerous faint sources in the Universe, including the very first galaxies and sources of cosmic reionization. MOSAIC has a high multiplex in the NIR and in the VIS, in addition to multi-Integral Field Units (Multi-IFUs) in NIR. As such it is perfectly suited to carry out an inventory of dark matter (from rotation curves) and baryons in the cool-warm gas phases in galactic haloes at z=3-4. MOSAIC will enable detailed maps of the intergalactic medium at z=3, the evolutionary history of dwarf galaxies during a Hubble time, the chemistry directly measured from stars up to several Mpc. Finally, it will measure all faint features seen in cluster gravitational lenses or in streams surrounding nearby galactic halos, providing MOSAIC to be a powerful instrument with an extremely large space of discoveries. The preliminary design of MOSAIC is expected to begin next year, and its level of readiness is already high, given the instrumental studies made by the team.
Integrated light spectroscopy from galaxies can be used to study the stellar populations that cannot be resolved into individual stars. This analysis relies on stellar population synthesis (SPS) techniques to study the formation history and structure of galaxies. However, the spectral templates available for SPS are limited, especially in the near-infrared. We present A-LIST (APOGEE Library of Infrared SSP Templates), a new set of high-resolution, near-IR SSP spectral templates spanning a wide range of ages (2-12 Gyr), metallicities ($rm -2.2 < [M/H] < +0.4$) and $alpha$ abundances ($rm -0.2 < [alpha/M] < +0.4$). This set of SSP templates is the highest resolution ($Rsim22500$) available in the near infrared, and the first such based on an empirical stellar library. Our models are generated using spectra of $sim$300,000 stars spread across the Milky Way, with a wide range of metallicities and abundances, from the APOGEE survey. We show that our model spectra provide accurate fits to M31 globular cluster spectra taken with APOGEE, with best-fit metallicities agreeing with those of previous estimates to within $sim$0.1 dex. We also compare these model spectra to lower-resolution E-MILES models and demonstrate that we recover the ages of these models to within $sim$1.5 Gyr. This library is available in https://github.com/aishashok/ALIST-library.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا