ﻻ يوجد ملخص باللغة العربية
The stellar populations of galaxies contain a wealth of detailed information. From the youngest, most massive stars, to almost invisible remnants, the history of star formation is encoded in the stars that make up a galaxy. Extracting some, or all, of this informationhas long been a goal of stellar population studies. This was achieved in the last couple of decades and it is now a routine task, which forms a crucial ingredient in much of observational galaxy evolution, from our Galaxy out to the most distant systems found. In many of these domains we are now limited not by sample size, but by systematic uncertainties and this will increasingly be the case in the future. The aim of this review is to outline the challenges faced by stellar population studies in the coming decade within the context of upcoming observational facilities. I will highlight the need to better understand the near-IR spectral range and outline the difficulties presented by less well understood phases of stellar evolution such as thermally pulsing AGB stars, horizontal branch stars and the very first stars. The influence of rotation and binarity on stellar population modeling is also briefly discussed.
The expected imaging capabilities of future Extremely Large Telescopes (ELTs) will offer the unique possibility to investigate the stellar population of distant galaxies from the photometry of the stars in very crowded fields. Using simulated images
We present new UV-to-IR stellar photometry of four low-extinction windows in the Galactic bulge, obtained with the Wide Field Camera 3 on the Hubble Space Telescope (HST). Using our five bandpasses, we have defined reddening-free photometric indices
Integrated light spectroscopy from galaxies can be used to study the stellar populations that cannot be resolved into individual stars. This analysis relies on stellar population synthesis (SPS) techniques to study the formation history and structure
The collection of planetary system properties derived from large surveys such as Kepler provides critical constraints on planet formation and evolution. These constraints can only be applied to planet formation models, however, if the observational b
We compile observations of the surface mass density profiles of dense stellar systems, including globular clusters in the Milky Way and nearby galaxies, massive star clusters in nearby starbursts, nuclear star clusters in dwarf spheroidals and late-t