ترغب بنشر مسار تعليمي؟ اضغط هنا

Development of a plasma panel radiation detector: recent progress and key issues

445   0   0.0 ( 0 )
 نشر من قبل Erez Etzion
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A radiation detector based on plasma display panel technology, which is the principal component of plasma television displays is presented. Plasma Panel Sensor (PPS) technology is a variant of micropattern gas radiation detectors. The PPS is conceived as an array of sealed plasma discharge gas cells which can be used for fast response (O(5ns) per pixel), high spatial resolution detection (pixel pitch can be less than 100 micrometer) of ionizing and minimum ionizing particles. The PPS is assembled from non-reactive, intrinsically radiation-hard materials: glass substrates, metal electrodes and inert gas mixtures. We report on the PPS development program, including simulations and design and the first laboratory studies which demonstrate the usage of plasma display panels in measurements of cosmic ray muons, as well as the expansion of experimental results on the detection of betas from radioactive sources.



قيم البحث

اقرأ أيضاً

130 - R. Ball 2014
This article reports on the development and experimental results of commercial plasma display panels adapted for their potential use as micropattern gas radiation detectors. The plasma panel sensors (PPS) design an materials include glass substrates, metal electrodes and inert gas mixtures which provide a physically robust, hermetically-sealed device. Plasma display panels used as detectors were tested with cosmic ray muons, beta rays and gamma rays, protons and thermal neutrons. The results demonstrated rise times and time resolution of a few nanoseconds, as well as sub-millimeter spatial resolution compatible with the pixel pitch.
133 - Robert Ball 2010
Plasma Display Panels (PDP), the underlying engine of panel plasma television displays, are being investigated for their utility as radiation detectors called Plasma Panel Sensors (PPS). The PPS a novel variant of a micropattern radiation detector, i s intended to be a fast, high resolution detector comprised of an array of plasma discharge cells operating in a hermetically sealed gas mixture. We report on the PPS development effort, including recent laboratory measurements.
The plasma panel sensor (PPS) is a gaseous micropattern radiation detector under current development. It has many operational and fabrication principles common to plasma display panels. It comprises a dense matrix of small, gas plasma discharge cells within a hermetically sealed panel. As in plasma display panels, it uses nonreactive, intrinsically radiation-hard materials such as glass substrates, refractory metal electrodes, and mostly inert gas mixtures. We are developing these devices primarily as thin, low-mass detectors with gas gaps from a few hundred microns to a few millimeters. The PPS is a high gain, inherently digital device with the potential for fast response times, fine position resolution (<50-mm RMS) and low cost. In this paper, we report on prototype PPS experimental results in detecting betas, protons, and cosmic muons, and we extrapolate on the PPS potential for applications including the detection of alphas, heavy ions at low-to-medium energy, thermal neutrons, and X-rays.
195 - R. Ball 2014
A new type of gaseous micropattern particle detector based on a closed-cell microcavity plasma panel sensor is reported. The first device was fabricated with 1 x 1 x 2 mm cells. It has shown very clean signals of 0.6 to 2.5 volt amplitude, fast rise time of approximately 2 ns and FWHM of about 2 ns with very uniform signal shapes across all pixels. From initial measurements with beta particles from a radioactive source, a maximum pixel efficiency of greater than 95% is calculated, for operation of the detector over a 100V wide span of high voltages (HV). Over this same HV range, the background rate per pixel was measured to be 3 to 4 orders of magnitude lower than the rate with the cell illuminated by the beta source. Pixel-to-pixel count rate uniformity is within 3% and stable within 3% for many days. The time resolution is 2.4 ns, and a very low cell-to-cell crosstalk has been measured between cells separated by 2 mm.
260 - Alexis Mulski 2017
The microhexcavity plasma panel detector is a type of gaseous particle detector consisting of a close-packed array of millimeter-size hexagonal cells. The cells are biased to operate in Geiger mode where each cell functions as an independent detectio n unit. The response of the detector to ionizing radiation was investigated using low-energy radioactive $ beta $ sources and cosmic ray muons. Efficiency measurements were conducted with cosmic ray muons in conjunction with a scintillator hodoscope. The rate response and signals obtained from the microhexcavity detector filled with Penning gas mixture at atmospheric pressure are herein described. The relative pixel efficiency, after allowing for ion-pair formation in the gas volume, is 96.8 $ pm $ 4.4$ % $ for operation of the detector above an applied high voltage of 1000 V.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا