ترغب بنشر مسار تعليمي؟ اضغط هنا

The WiggleZ Dark Energy Survey: the transition to large-scale cosmic homogeneity

168   0   0.0 ( 0 )
 نشر من قبل Morag Scrimgeour
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have made the largest-volume measurement to date of the transition to large-scale homogeneity in the distribution of galaxies. We use the WiggleZ survey, a spectroscopic survey of over 200,000 blue galaxies in a cosmic volume of ~1 (Gpc/h)^3. A new method of defining the homogeneity scale is presented, which is more robust than methods previously used in the literature, and which can be easily compared between different surveys. Due to the large cosmic depth of WiggleZ (up to z=1) we are able to make the first measurement of the transition to homogeneity over a range of cosmic epochs. The mean number of galaxies N(<r) in spheres of comoving radius r is proportional to r^3 within 1%, or equivalently the fractal dimension of the sample is within 1% of D_2=3, at radii larger than 71 pm 8 Mpc/h at z~0.2, 70 pm 5 Mpc/h at z~0.4, 81 pm 5 Mpc/h at z~0.6, and 75 pm 4 Mpc/h at z~0.8. We demonstrate the robustness of our results against selection function effects, using a LCDM N-body simulation and a suite of inhomogeneous fractal distributions. The results are in excellent agreement with both the LCDM N-body simulation and an analytical LCDM prediction. We can exclude a fractal distribution with fractal dimension below D_2=2.97 on scales from ~80 Mpc/h up to the largest scales probed by our measurement, ~300 Mpc/h, at 99.99% confidence.



قيم البحث

اقرأ أيضاً

We place the most robust constraint to date on the scale of the turnover in the cosmological matter power spectrum using data from the WiggleZ Dark Energy Survey. We find this feature to lie at a scale of $k_0=0.0160^{+0.0041}_{-0.0035}$ [h/Mpc] (68% confidence) for an effective redshift of 0.62 and obtain from this the first-ever turnover-derived distance and cosmology constraints: a measure of the cosmic distance-redshift relation in units of the horizon scale at the redshift of radiation-matter equality (r_H) of D_V(z=0.62)/r_H=18.3 (+6.3/-3.3) and, assuming a prior on the number of extra relativistic degrees of freedom $N_{eff}=3$, constraints on the matter density parameter $Omega_Mh^2=0.136^{+0.026}_{-0.052}$ and on the redshift of matter-radiation equality $z_{eq}=3274^{+631}_{-1260}$. All results are in excellent agreement with the predictions of standard LCDM models. Our constraints on the logarithmic slope of the power spectrum on scales larger than the turnover is bounded in the lower limit with values only as low as -1 allowed, with the prediction of standard LCDM models easily accommodated by our results. Lastly, we generate forecasts for the achievable precision of future surveys at constraining $k_0$, $Omega_Mh^2$, $z_{eq}$ and $N_{eff}$. We find that BOSS should substantially improve upon the WiggleZ turnover constraint, reaching a precision on $k_0$ of $pm$9% (68% confidence), translating to precisions on $Omega_Mh^2$ and $z_{eq}$ of $pm$10% (assuming a prior $N_{eff}=3$) and on $N_{eff}$ of (+78/-56)% (assuming a prior $Omega_Mh^2=0.135$). This is sufficient precision to sharpen the constraints on $N_{eff}$ from WMAP, particularly in its upper limit. For Euclid, we find corresponding attainable precisions on $(k_0, Omega_Mh^2, N_eff)$ of (3,4,+17/-21)%. This represents a precision approaching our forecasts for the Planck Surveyor.
We present precise measurements of the growth rate of cosmic structure for the redshift range 0.1 < z < 0.9, using redshift-space distortions in the galaxy power spectrum of the WiggleZ Dark Energy Survey. Our results, which have a precision of aroun d 10% in four independent redshift bins, are well-fit by a flat LCDM cosmological model with matter density parameter Omega_m = 0.27. Our analysis hence indicates that this model provides a self-consistent description of the growth of cosmic structure through large-scale perturbations and the homogeneous cosmic expansion mapped by supernovae and baryon acoustic oscillations. We achieve robust results by systematically comparing our data with several different models of the quasi-linear growth of structure including empirical models, fitting formulae calibrated to N-body simulations, and perturbation theory techniques. We extract the first measurements of the power spectrum of the velocity divergence field, P_vv(k), as a function of redshift (under the assumption that P_gv(k) = -sqrt[P_gg(k) P_vv(k)] where g is the galaxy overdensity field), and demonstrate that the WiggleZ galaxy-mass cross-correlation is consistent with a deterministic (rather than stochastic) scale-independent bias model for WiggleZ galaxies for scales k < 0.3 h/Mpc. Measurements of the cosmic growth rate from the WiggleZ Survey and other current and future observations offer a powerful test of the physical nature of dark energy that is complementary to distance-redshift measures such as supernovae and baryon acoustic oscillations.
The growth history of large-scale structure in the Universe is a powerful probe of the cosmological model, including the nature of dark energy. We study the growth rate of cosmic structure to redshift $z = 0.9$ using more than $162{,}000$ galaxy reds hifts from the WiggleZ Dark Energy Survey. We divide the data into four redshift slices with effective redshifts $z = [0.2,0.4,0.6,0.76]$ and in each of the samples measure and model the 2-point galaxy correlation function in parallel and transverse directions to the line-of-sight. After simultaneously fitting for the galaxy bias factor we recover values for the cosmic growth rate which are consistent with our assumed $Lambda$CDM input cosmological model, with an accuracy of around 20% in each redshift slice. We investigate the sensitivity of our results to the details of the assumed model and the range of physical scales fitted, making close comparison with a set of N-body simulations for calibration. Our measurements are consistent with an independent power-spectrum analysis of a similar dataset, demonstrating that the results are not driven by systematic errors. We determine the pairwise velocity dispersion of the sample in a non-parametric manner, showing that it systematically increases with decreasing redshift, and investigate the Alcock-Paczynski effects of changing the assumed fiducial model on the results. Our techniques should prove useful for current and future galaxy surveys mapping the growth rate of structure using the 2-dimensional correlation function.
Higher-order statistics are a useful and complementary tool for measuring the clustering of galaxies, containing information on the non-gaussian evolution and morphology of large-scale structure in the Universe. In this work we present measurements o f the three-point correlation function (3PCF) for 187,000 galaxies in the WiggleZ spectroscopic galaxy survey. We explore the WiggleZ 3PCF scale and shape dependence at three different epochs z=0.35, 0.55 and 0.68, the highest redshifts where these measurements have been made to date. Using N-body simulations to predict the clustering of dark matter, we constrain the linear and non-linear bias parameters of WiggleZ galaxies with respect to dark matter, and marginalise over them to obtain constraints on sigma_8(z), the variance of perturbations on a scale of 8 Mpc/h and its evolution with redshift. These measurements of sigma_8(z), which have 10-20% accuracies, are consistent with the predictions of the LCDM concordance cosmology and test this model in a new way.
This paper presents cosmological results from the final data release of the WiggleZ Dark Energy Survey. We perform full analyses of different cosmological models using the WiggleZ power spectra measured at z=0.22, 0.41, 0.60, and 0.78, combined with other cosmological datasets. The limiting factor in this analysis is the theoretical modelling of the galaxy power spectrum, including non-linearities, galaxy bias, and redshift-space distortions. In this paper we assess several different methods for modelling the theoretical power spectrum, testing them against the Gigaparsec WiggleZ simulations (GiggleZ). We fit for a base set of 6 cosmological parameters, {Omega_b h^2, Omega_CDM h^2, H_0, tau, A_s, n_s}, and 5 supplementary parameters {n_run, r, w, Omega_k, sum m_nu}. In combination with the Cosmic Microwave Background (CMB), our results are consistent with the LambdaCDM concordance cosmology, with a measurement of the matter density of Omega_m =0.29 +/- 0.016 and amplitude of fluctuations sigma_8 = 0.825 +/- 0.017. Using WiggleZ data with CMB and other distance and matter power spectra data, we find no evidence for any of the extension parameters being inconsistent with their LambdaCDM model values. The power spectra data and theoretical modelling tools are available for use as a module for CosmoMC, which we here make publicly available at http://smp.uq.edu.au/wigglez-data . We also release the data and random catalogues used to construct the baryon acoustic oscillation correlation function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا