ترغب بنشر مسار تعليمي؟ اضغط هنا

The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift z=0.9

127   0   0.0 ( 0 )
 نشر من قبل Chris Blake
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present precise measurements of the growth rate of cosmic structure for the redshift range 0.1 < z < 0.9, using redshift-space distortions in the galaxy power spectrum of the WiggleZ Dark Energy Survey. Our results, which have a precision of around 10% in four independent redshift bins, are well-fit by a flat LCDM cosmological model with matter density parameter Omega_m = 0.27. Our analysis hence indicates that this model provides a self-consistent description of the growth of cosmic structure through large-scale perturbations and the homogeneous cosmic expansion mapped by supernovae and baryon acoustic oscillations. We achieve robust results by systematically comparing our data with several different models of the quasi-linear growth of structure including empirical models, fitting formulae calibrated to N-body simulations, and perturbation theory techniques. We extract the first measurements of the power spectrum of the velocity divergence field, P_vv(k), as a function of redshift (under the assumption that P_gv(k) = -sqrt[P_gg(k) P_vv(k)] where g is the galaxy overdensity field), and demonstrate that the WiggleZ galaxy-mass cross-correlation is consistent with a deterministic (rather than stochastic) scale-independent bias model for WiggleZ galaxies for scales k < 0.3 h/Mpc. Measurements of the cosmic growth rate from the WiggleZ Survey and other current and future observations offer a powerful test of the physical nature of dark energy that is complementary to distance-redshift measures such as supernovae and baryon acoustic oscillations.


قيم البحث

اقرأ أيضاً

The growth history of large-scale structure in the Universe is a powerful probe of the cosmological model, including the nature of dark energy. We study the growth rate of cosmic structure to redshift $z = 0.9$ using more than $162{,}000$ galaxy reds hifts from the WiggleZ Dark Energy Survey. We divide the data into four redshift slices with effective redshifts $z = [0.2,0.4,0.6,0.76]$ and in each of the samples measure and model the 2-point galaxy correlation function in parallel and transverse directions to the line-of-sight. After simultaneously fitting for the galaxy bias factor we recover values for the cosmic growth rate which are consistent with our assumed $Lambda$CDM input cosmological model, with an accuracy of around 20% in each redshift slice. We investigate the sensitivity of our results to the details of the assumed model and the range of physical scales fitted, making close comparison with a set of N-body simulations for calibration. Our measurements are consistent with an independent power-spectrum analysis of a similar dataset, demonstrating that the results are not driven by systematic errors. We determine the pairwise velocity dispersion of the sample in a non-parametric manner, showing that it systematically increases with decreasing redshift, and investigate the Alcock-Paczynski effects of changing the assumed fiducial model on the results. Our techniques should prove useful for current and future galaxy surveys mapping the growth rate of structure using the 2-dimensional correlation function.
We perform a joint determination of the distance-redshift relation and cosmic expansion rate at redshifts z = 0.44, 0.6 and 0.73 by combining measurements of the baryon acoustic peak and Alcock-Paczynski distortion from galaxy clustering in the Wiggl eZ Dark Energy Survey, using a large ensemble of mock catalogues to calculate the covariance between the measurements. We find that D_A(z) = (1205 +/- 114, 1380 +/- 95, 1534 +/- 107) Mpc and H(z) = (82.6 +/- 7.8, 87.9 +/- 6.1, 97.3 +/- 7.0) km/s/Mpc at these three redshifts. Further combining our results with other baryon acoustic oscillation and distant supernovae datasets, we use a Monte Carlo Markov Chain technique to determine the evolution of the Hubble parameter H(z) as a stepwise function in 9 redshift bins of width dz = 0.1, also marginalizing over the spatial curvature. Our measurements of H(z), which have precision better than 7% in most redshift bins, are consistent with the expansion history predicted by a cosmological-constant dark-energy model, in which the expansion rate accelerates at redshift z < 0.7.
Higher-order statistics are a useful and complementary tool for measuring the clustering of galaxies, containing information on the non-gaussian evolution and morphology of large-scale structure in the Universe. In this work we present measurements o f the three-point correlation function (3PCF) for 187,000 galaxies in the WiggleZ spectroscopic galaxy survey. We explore the WiggleZ 3PCF scale and shape dependence at three different epochs z=0.35, 0.55 and 0.68, the highest redshifts where these measurements have been made to date. Using N-body simulations to predict the clustering of dark matter, we constrain the linear and non-linear bias parameters of WiggleZ galaxies with respect to dark matter, and marginalise over them to obtain constraints on sigma_8(z), the variance of perturbations on a scale of 8 Mpc/h and its evolution with redshift. These measurements of sigma_8(z), which have 10-20% accuracies, are consistent with the predictions of the LCDM concordance cosmology and test this model in a new way.
We identified voids in the completed VIMOS Public Extragalactic Redshift Survey (VIPERS), using an algorithm based on searching for empty spheres. We measured the cross-correlation between the centres of voids and the complete galaxy catalogue. The c ross-correlation function exhibits a clear anisotropy in both VIPERS fields (W1 and W4), which is characteristic of linear redshift space distortions. By measuring the projected cross-correlation and then deprojecting it we are able to estimate the undistorted cross-correlation function. We propose that given a sufficiently well measured cross-correlation function one should be able to measure the linear growth rate of structure by applying a simple linear Gaussian streaming model for the redshift space distortions (RSD). Our study of voids in 306 mock galaxy catalogues mimicking the VIPERS fields would suggest that VIPERS is capable of measuring $beta$ with an error of around $25%$. Applying our method to the VIPERS data, we find a value for the redshift space distortion parameter, $beta = 0.423^{+0.104}_{-0.108}$, which given the bias of the galaxy population we use gives a linear growth rate of $fsigma_8 = 0.296^{+0.075}_{-0.078}$ at $z = 0.727$. These results are consistent with values observed in parallel VIPERS analysis using standard techniques.
We have made the largest-volume measurement to date of the transition to large-scale homogeneity in the distribution of galaxies. We use the WiggleZ survey, a spectroscopic survey of over 200,000 blue galaxies in a cosmic volume of ~1 (Gpc/h)^3. A ne w method of defining the homogeneity scale is presented, which is more robust than methods previously used in the literature, and which can be easily compared between different surveys. Due to the large cosmic depth of WiggleZ (up to z=1) we are able to make the first measurement of the transition to homogeneity over a range of cosmic epochs. The mean number of galaxies N(<r) in spheres of comoving radius r is proportional to r^3 within 1%, or equivalently the fractal dimension of the sample is within 1% of D_2=3, at radii larger than 71 pm 8 Mpc/h at z~0.2, 70 pm 5 Mpc/h at z~0.4, 81 pm 5 Mpc/h at z~0.6, and 75 pm 4 Mpc/h at z~0.8. We demonstrate the robustness of our results against selection function effects, using a LCDM N-body simulation and a suite of inhomogeneous fractal distributions. The results are in excellent agreement with both the LCDM N-body simulation and an analytical LCDM prediction. We can exclude a fractal distribution with fractal dimension below D_2=2.97 on scales from ~80 Mpc/h up to the largest scales probed by our measurement, ~300 Mpc/h, at 99.99% confidence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا