ﻻ يوجد ملخص باللغة العربية
A nano-shuttle consisting of two metallic islands connected in series and integrated between two contacts is studied. We evaluate the electron transport through the system in the presence of a source-drain voltage with and without an RF excitation. We evaluate the response of the system in terms of the net direct current generated by the mechanical motion of the oscillators. An introduction to the charge stability diagram is given in terms of electrochemical potentials and mechanical displacements. The low capacitance of the islands allows the observation of Coulomb blockade even at room temperature. Using radio frequency excitations, the nonlinear dynamics of the system is studied. The oscillators can be tuned to unstable regions where mechanically assisted transfer of electrons can further increase the amplitude of motion, resulting of a net energy being pumped into the system. The instabilities can be exploited to parametrically amplify the response to an excitation, suggesting a practical scheme for detection of mechanical motion of nanoscale objects.
We demonstrate single electron shuttling through two coupled nanomechanical pendula. The pendula are realized as nanopillars etched out of the semiconductor substrate. Coulomb blockade is found at room temperature, allowing metrological applications.
We have realized a hybrid solid-state quantum device in which a single-electron semiconductor double quantum dot is dipole coupled to a superconducting microwave frequency transmission line resonator. The dipolar interaction between the two entities
Quantum confinement leads to the formation of discrete electronic states in quantum dots. Here we probe electron-phonon interactions in a suspended InAs nanowire double quantum dot (DQD) that is electric-dipole coupled to a microwave cavity. We apply
We investigate electron shuttling in three-terminal nanoelectromechanocal device built on a movable metallic rod oscillating between two drains. The device shows a double-well shaped electromechanical potential tunable by a source-drain bias voltage.
We consider a type of Quantum Electro-Mechanical System, known as the shuttle system, first proposed by Gorelik et al., [Phys. Rev. Lett., 80, 4526, (1998)]. We use a quantum master equation treatment and compare the semi-classical solution to a full