ﻻ يوجد ملخص باللغة العربية
An attempt has been made to investigate the global SU(2) and SU(3) unitary flavor symmetries systematically in terms of quaternion and octonion respectively. It is shown that these symmetries are suitably handled with quaternions and octonions in order to obtain their generators, commutation rules and symmetry properties. Accordingly, Casimir operators for SU(2)and SU(3) flavor symmetries are also constructed for the proper testing of these symmetries in terms of quaternions and octonions.
Starting with the quaternionic formulation of isospin SU(2) group, we have derived the relations for different components of isospin with quark states. Extending this formalism to the case of SU(3) group we have considered the theory of octonion vari
In this paper, Grand Unified theories are discussed in terms of quaternions and octonions by using the relation between quaternion basis elements with Pauli matrices and Octonions with Gell Mann lambda matrices. Connection between the unitary groups
Starting with the usual definitions of octonions, an attempt has been made to establish the relations between octonion basis elements and Gell-Mann lambda matrices of SU(3)symmetry on comparing the multiplication tables for Gell-Mann lambda matrices
All covariant time operators with normalized probability distribution are derived. Symmetry criteria are invoked to arrive at a unique expression for a given Hamiltonian. As an application, a well known result for the arrival time distribution of a f
The 8 $times$ 8 matrix representation of SO(8) Symmetry has been defined by using the direct product of Pauli matrices and Gamma matrices. These 8 $times$ 8 matrices are being used to describe the rotations in SO(8) symmetry. The comparison of 8$time