ﻻ يوجد ملخص باللغة العربية
Starting with the usual definitions of octonions, an attempt has been made to establish the relations between octonion basis elements and Gell-Mann lambda matrices of SU(3)symmetry on comparing the multiplication tables for Gell-Mann lambda matrices of SU(3)symmetry and octonion basis elements. Consequently, the quantum chromo dynamics (QCD) has been reformulated and it is shown that the theory of strong interactions could be explained better in terms of non-associative octonion algebra. Further, the octonion automorphism group SU(3) has been suitably handled with split basis of octonion algebra showing that the SU(3)_{C}gauge theory of colored quarks carries two real gauge fields which are responsible for the existence of two gauge potentials respectively associated with electric charge and magnetic monopole and supports well the idea that the colored quarks are dyons.
Starting with the quaternionic formulation of isospin SU(2) group, we have derived the relations for different components of isospin with quark states. Extending this formalism to the case of SU(3) group we have considered the theory of octonion vari
In this paper, Grand Unified theories are discussed in terms of quaternions and octonions by using the relation between quaternion basis elements with Pauli matrices and Octonions with Gell Mann lambda matrices. Connection between the unitary groups
An attempt has been made to investigate the global SU(2) and SU(3) unitary flavor symmetries systematically in terms of quaternion and octonion respectively. It is shown that these symmetries are suitably handled with quaternions and octonions in ord
The 8 $times$ 8 matrix representation of SO(8) Symmetry has been defined by using the direct product of Pauli matrices and Gamma matrices. These 8 $times$ 8 matrices are being used to describe the rotations in SO(8) symmetry. The comparison of 8$time
I review the basics of perturbative QCD, including infrared divergences and safety, collinear and $k_T$ factorization theorems, and various evolution equations and resummation techniques for single- and double-logarithmic corrections. I then elaborat