ترغب بنشر مسار تعليمي؟ اضغط هنا

Creation of ultracold Sr2 molecules in the electronic ground state

154   0   0.0 ( 0 )
 نشر من قبل Florian Schreck
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the creation of ultracold 84Sr2 molecules in the electronic ground state. The molecules are formed from atom pairs on sites of an optical lattice using stimulated Raman adiabatic passage (STIRAP). We achieve a transfer efficiency of 30% and obtain 4x10^4 molecules with full control over the external and internal quantum state. STIRAP is performed near the narrow 1S0-3P1 intercombination transition, using a vibrational level of the 0u potential as intermediate state. In preparation of our molecule association scheme, we have determined the binding energies of the last vibrational levels of the 0u, 1u excited-state, and the 1Sigma_g^+ ground-state potentials. Our work overcomes the previous limitation of STIRAP schemes to systems with Feshbach resonances, thereby establishing a route that is applicable to many systems beyond bi-alkalis.



قيم البحث

اقرأ أيضاً

Starting from weakly bound Feshbach molecules, we demonstrate a two-photon pathway to the dipolar ground state of bi-alkali molecules that involves only singlet-to-singlet optical transitions. This pathway eliminates the search for a suitable interme diate state with sufficient singlet-triplet mixing and the exploration of its hyperfine structure, as is typical for pathways starting from triplet dominated Feshbach molecules. By selecting a Feshbach state with a stretched singlet hyperfine component and controlling the polarization of the excitation laser, we assure coupling to only a single hyperfine component of the $textrm{A}^{1}Sigma^{+}$ excited potential, even if the hyperfine structure is not resolved. Similarly, we address a stretched hyperfine component of the $textrm{X}^{1}Sigma^{+}$ rovibrational ground state, and therefore an ideal three level system is established. We demonstrate this pathway with ${}^{6}textrm{Li}{}^{40}textrm{K}$ molecules. By exploring deeply bound states of the $textrm{A}^{1}Sigma^{+}$ potential, we are able to obtain large and balanced Rabi frequencies for both transitions. This method can be applied to other molecular species.
127 - T. Xie 2020
We propose a method to suppress the chemical reactions between ultracold bosonic ground-state $^{23}$Na$^{87}$Rb molecules based on optical shielding. By applying a laser with a frequency blue-detuned from the transition between the lowest rovibratio nal level of the electronic ground state $X^1Sigma^+ (v_X=0, j_X=0)$, and the long-lived excited level $b^3Pi_0 (v_b=0, j_b=1)$, the long-range dipole-dipole interaction between the colliding molecules can be engineered, leading to a dramatic suppression of reactive and photoinduced inelastic collisions, for both linear and circular laser polarizations. We demonstrate that the spontaneous emission from $b^3Pi_0 (v_b=0, j_b=1)$ does not deteriorate the shielding process. This opens the possibility for a strong increase of the lifetime of cold molecule traps, and for an efficient evaporative cooling. We also anticipate that the proposed mechanism is valid for alkali-metal diatomics with sufficiently large dipole-dipole interactions.
We demonstrate coherent control of both the rotational and hyperfine state of ultracold, chemically stable $^{87}$Rb$^{133}$Cs molecules with external microwave fields. We create a sample of ~2000 molecules in the lowest hyperfine level of the rovibr onic ground state N = 0. We measure the transition frequencies to 8 different hyperfine levels of the N = 1 state at two magnetic fields ~23 G apart. We determine accurate values of rotational and hyperfine coupling constants that agree well with previous calculations. We observe Rabi oscillations on each transition, allowing complete population transfer to a selected hyperfine level of N = 1. Subsequent application of a second microwave pulse allows transfer of molecules back to a different hyperfine level of N = 0.
We report the creation of a sample of over 1000 ultracold $^{87}$RbCs molecules in the lowest rovibrational ground state, from an atomic mixture of $^{87}$Rb and Cs, by magnetoassociation on an interspecies Feshbach resonance followed by stimulated R aman adiabatic passage (STIRAP). We measure the binding energy of the RbCs molecule to be $h c times 3811.576(1)$ cm$^{-1}$ and the $|v=0, J=0>$ to $|v=0, J=2>$ splitting to be $h times 2940.09(6)$ MHz. Stark spectroscopy of the rovibrational ground state yields an electric dipole moment of 1.225(3)(8) D, where the values in parentheses are the statistical and systematic uncertainties, respectively. We demonstrate that a space-fixed dipole moment of 0.355(2)(4) D is accessible in RbCs, which is substantially higher than in previous work.
Understanding and controlling collisions is crucial to the burgeoning field of ultracold molecules. All experiments so far have observed fast loss of molecules from the trap. However, the dominant mechanism for collisional loss is not well understood when there are no allowed 2-body loss processes. Here we experimentally investigate collisional losses of nonreactive ultracold RbCs molecules, and compare our findings with the sticky collision hypothesis that pairs of molecules form long-lived collision complexes. We demonstrate that loss of molecules occupying their rotational and hyperfine ground state is best described by second-order rate equations, consistent with the expectation for complex-mediated collisions, but that the rate is lower than the limit of universal loss. The loss is insensitive to magnetic field but increases for excited rotational states. We demonstrate that dipolar effects lead to significantly faster loss for an incoherent mixture of rotational states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا