ترغب بنشر مسار تعليمي؟ اضغط هنا

Controlling the Rotational and Hyperfine State of Ultracold $^{87}$Rb$^{133}$Cs Molecules

110   0   0.0 ( 0 )
 نشر من قبل Philip Gregory
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate coherent control of both the rotational and hyperfine state of ultracold, chemically stable $^{87}$Rb$^{133}$Cs molecules with external microwave fields. We create a sample of ~2000 molecules in the lowest hyperfine level of the rovibronic ground state N = 0. We measure the transition frequencies to 8 different hyperfine levels of the N = 1 state at two magnetic fields ~23 G apart. We determine accurate values of rotational and hyperfine coupling constants that agree well with previous calculations. We observe Rabi oscillations on each transition, allowing complete population transfer to a selected hyperfine level of N = 1. Subsequent application of a second microwave pulse allows transfer of molecules back to a different hyperfine level of N = 0.

قيم البحث

اقرأ أيضاً

We explore coherent multi-photon processes in $^{87}$Rb$^{133}$Cs molecules using 3-level lambda and ladder configurations of rotational and hyperfine states, and discuss their relevance to future applications in quantum computation and quantum simul ation. In the lambda configuration, we demonstrate the driving of population between two hyperfine levels of the rotational ground state via a two-photon Raman transition. Such pairs of states may be used in the future as a quantum memory, and we measure a Ramsey coherence time for a superposition of these states of 58(9) ms. In the ladder configuration, we show that we can generate and coherently populate microwave dressed states via the observation of an Autler-Townes doublet. We demonstrate that we can control the strength of this dressing by varying the intensity of the microwave coupling field. Finally, we perform spectroscopy of the rotational states of $^{87}$Rb$^{133}$Cs up to $N=6$, highlighting the potential of ultracold molecules for quantum simulation in synthetic dimensions. By fitting the measured transition frequencies we determine a new value of the centrifugal distortion coefficient $D_v=htimes207.3(2)~$Hz.
We report the production of a high phase-space density mixture of $^{87}$Rb and $^{133}$Cs atoms in a levitated crossed optical dipole trap as the first step towards the creation of ultracold RbCs molecules via magneto-association. We present a simpl e and robust experimental setup designed for the sympathetic cooling of $^{133}$Cs via interspecies elastic collisions with $^{87}$Rb. Working with the $|F=1, m_F=+1 >$ and the $|3, +3 >$ states of $^{87}$Rb and $^{133}$Cs respectively, we measure a high interspecies three-body inelastic collision rate $sim 10^{-25}-10^{-26} rm{cm}^{6}rm{s}^{-1}$ which hinders the sympathetic cooling. Nevertheless by careful tailoring of the evaporation we can produce phase-space densities near quantum degeneracy for both species simultaneously. In addition we report the observation of an interspecies Feshbach resonance at 181.7(5) G and demonstrate the creation of Cs$_{2}$ molecules via magneto-association on the 4g(4) resonance at 19.8 G. These results represent important steps towards the creation of ultracold RbCs molecules in our apparatus.
Recently we have reported (Knoop et al. [arXiv:1404.4826]) on an experimental determination of metastable triplet $^4$He+$^{87}$Rb scattering length by performing thermalization measurements for an ultracold mixture in a quadrupole magnetic trap. Her e we present our experimental apparatus and elaborate on these thermalization measurements. In particular we give a theoretical description of interspecies thermalization rate for a quadrupole magnetic trap, i. e. in the presence of Majorana heating, and a general procedure to extract the scattering length from the elastic cross section at finite temperature based on knowledge of the $C_6$ coefficient alone. In addition, from our thermalization data we obtain an upper limit of the total interspecies two-body loss rate coefficient of $1.5times 10^{-12}$ cm$^3$s$^{-1}$.
We measure higher partial wave Feshbach resonances in an ultracold mixture of fermionic $^6$Li and bosonic $^{133}$Cs by magnetic field dependent atom-loss spectroscopy. For the $p$-wave Feshbach resonances we observe triplet structures corresponding to different projections of the pair rotation angular momentum onto the external magnetic field axis. We attribute the splittings to the spin-spin and spin-rotation couplings by modelling the observation using a full coupled-channel calculation. Comparison with an oversimplified model, estimating the spin-rotation coupling by describing the weakly bound close-channel molecular state with the perturbative multipole expansion, reveals the significant contribution of the molecular wavefunction at short internuclear distances. Our findings highlight the potential of Feshbach resonances in providing precise information on short- and intermediate-range molecular couplings and wavefunctions. The observed $d$-wave Feshbach resonances allow us to refine the LiCs singlet and triplet ground-state molecular potential curves at large internuclear separations.
We report the binding energy of $^{87}$Rb$^{133}$Cs molecules in their rovibrational ground state measured using an offset-free optical frequency comb based on difference frequency generation technology. We create molecules in the absolute ground sta te using stimulated Raman adiabatic passage (STIRAP) with a transfer efficiency of 88%. By measuring the absolute frequencies of our STIRAP lasers, we find the energy-level difference from an initial weakly-bound Feshbach state to the rovibrational ground state with a resolution of 5 kHz over an energy-level difference of more than 114 THz; this lets us discern the hyperfine splitting of the ground state. Combined with theoretical models of the Feshbach state binding energies and ground-state hyperfine structure, we determine a zero-field binding energy of $htimes114,268,135,237(5)(50)$ kHz. To our knowledge, this is the most accurate determination to date of the dissociation energy of a molecule.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا