ﻻ يوجد ملخص باللغة العربية
The interface between the insulating oxides LaAlO3 and SrTiO3 exhibits a superconducting two-dimensional electron system that can be modulated by a gate voltage. While gating of the conductivity has been probed extensively and gating of the superconducting critical temperature has been demonstrated, the question whether, and if so how, the gate tunes the superfluid density and superconducting order parameter is unanswered. We present local magnetic susceptibility, related to the superfluid density, as a function of temperature, gate voltage and location. We show that the temperature dependence of the superfluid density at different gate voltages collapse to a single curve characteristic of a full superconducting gap. Further, we show that the dipole moments observed in this system are not modulated by the gate voltage.
Recently superconductivity at the interface between the insulators LaAlO3 and SrTiO3 has been tuned with the electric field effect to an unprecedented range of transition temperatures. Here we perform a detailed finite size scaling analysis to explor
The antiferromagnetic(AFM) insulator-superconductor transition has been always a center of interest in the underlying physics of unconventional superconductors. The quantum phase transition between Mott insulator with AFM and superconductor can be in
Insights into the role of interactions in determining the macroscopic state of a system can be obtained by observing its evolution with an isothermal variation of density. We explore the isothermal evolution of the electron gas in AlOx/SrTiO3 by a co
We report superconductivity in quasi-1D nanostructures created at the LaAlO3/SrTiO3 interface. Nanostructures having line widths w~10 nm are formed from the parent two-dimensional electron liquid using conductive atomic force microscope lithography.
The superconductor at the LaAlO3-SrTiO3 interface provides a model system for the study of two-dimensional superconductivity in the dilute carrier density limit. Here we experimentally address the pairing mechanism in this superconductor. We extract