ﻻ يوجد ملخص باللغة العربية
We study the growth of black holes (BHs) in galaxies using three-dimensional smoothed particle hydrodynamic simulations with new implementations of the momentum mechanical feedback, and restriction of accreted elements to those that are gravitationally bound to the BH. We also include the feedback from the X-ray radiation emitted by the BH, which heats the surrounding gas in the host galaxies, and adds radial momentum to the fluid. We perform simulations of isolated galaxies and merging galaxies and test various feedback models with the new treatment of the Bondi radius criterion. We find that overall the BH growth is similar to what has been obtained by earlier workers using the Springel, Di Matteo, & Hernquist algorithms. However, the outflowing wind velocities and mechanical energy emitted by winds are considerably higher (v_w ~ 1000-3000 km/s) compared to the standard thermal feedback model (v_w ~ 50-100 km/s). While the thermal feedback model emits only 0.1 % of BH released energy in winds, the momentum feedback model emits more than 30 % of the total energy released by the BH in winds. In the momentum feedback model, the degree of fluctuation in both radiant and wind output is considerably larger than in the standard treatments. We check that the new model of the BH mass accretion agrees with analytic results for the standard Bondi problem.
Here we introduce GAMESH, a novel pipeline which implements self-consistent radiative and chemical feedback in a computational model of galaxy formation. By combining the cosmological chemical-evolution model GAMETE with the radiative transfer code C
We study the effect of AGN mechanical and radiation feedback on the formation of bulge dominated galaxies via mergers of disc galaxies. The merging galaxies have mass-ratios of 1:1 to 6:1 and include pre-existing hot gaseous halos to properly account
We explore the connections between the evolving galaxy and AGN populations. We present a simple phenomenological model that links the evolving galaxy mass function and the evolving quasar luminosity function, which makes specific and testable predict
Radiative feedback (RFB) from stars plays a key role in galaxies, but remains poorly-understood. We explore this using high-resolution, multi-frequency radiation-hydrodynamics (RHD) simulations from the Feedback In Realistic Environments (FIRE) proje
Powerful relativistic jets in radio galaxies are capable of driving strong outflows but also inducing star-formation by pressure-triggering collapse of dense clouds. We review theoretical work on negative and positive active galactic nuclei feedback,