ﻻ يوجد ملخص باللغة العربية
In order to evaluate the quality of the scientific research, we introduce a new family of scientific performance measures, called Scientific Research Measures (SRM). Our proposal originates from the more recent developments in the theory of risk measures and is an attempt to resolve the many problems of the existing bibliometric indices. The SRM that we introduce are based on the whole scientists citation record and are: coherent, as they share the same structural properties; flexible to fit peculiarities of different areas and seniorities; granular, as they allow a more precise comparison between scientists, and inclusive, as they comprehend several popular indices. Another key feature of our SRM is that they are planned to be calibrated to the particular scientific community. We also propose a dual formulation of this problem and explain its relevance in this context.
This paper gives an overview of the theory of dynamic convex risk measures for random variables in discrete time setting. We summarize robust representation results of conditional convex risk measures, and we characterize various time consistency pro
In this paper, we introduce the rich classes of conditional distortion (CoD) risk measures and distortion risk contribution ($Delta$CoD) measures as measures of systemic risk and analyze their properties and representations. The classes include the w
Risk assessment under different possible scenarios is a source of uncertainty that may lead to concerning financial losses. We address this issue, first, by adapting a robust framework to the class of spectral risk measures. Second, we propose a Devi
This paper approaches the definition and properties of dynamic convex risk measures through the notion of a family of concave valuation operators satisfying certain simple and credible axioms. Exploring these in the simplest context of a finite time
We propose a method to assess the intrinsic risk carried by a financial position $X$ when the agent faces uncertainty about the pricing rule assigning its present value. Our approach is inspired by a new interpretation of the quasiconvex duality in a