ﻻ يوجد ملخص باللغة العربية
We prove that sign problems in the traditional approach to some lattice Yukawa models can be completely solved when the fermions are formulated using fermion bags and the bosons are formulated in the worldline representation. We prove this within the context of two examples of three dimensional models, symmetric under $U_L(1) times U_R(1) times Z_2 ({Parity})$ transformations, one involving staggered fermions and the other involving Wilson fermions. We argue that these models have interesting quantum phase transitions that can now be studied using Monte Carlo methods.
The fermion bag approach is a new method to tackle fermion sign problems in lattice field theories. Using this approach it is possible to solve a class of sign problems that seem unsolvable by traditional methods. The new solutions emerge when partit
We study quantum critical behavior in three dimensional lattice Gross-Neveu models containing two massless Dirac fermions. We focus on two models with SU(2) flavor symmetry and either a $Z_2$ or a U(1) chiral symmetry. Both models could not be studie
This an English translation of a review of finite-density lattice QCD. The original version in Japanese appeared in Soryushiron Kenkyu Vol 31 (2020) No. 1.
Sign problems in path integrals arise when different field configurations contribute with different signs or phases. Phase unwrapping describes a family of signal processing techniques in which phase differences between elements of a time series are
We study the chiral Ising, the chiral XY and the chiral Heisenberg models at four-loop order with the perturbative renormalization group in $4-epsilon$ dimensions and compute critical exponents for the Gross-Neveu-Yukawa fixed points to order $mathca