ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic-Field Dependence of Tunnel Couplings in Carbon Nanotube Quantum Dots

136   0   0.0 ( 0 )
 نشر من قبل Sabine Andergassen
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By means of sequential and cotunneling spectroscopy, we study the tunnel couplings between metallic leads and individual levels in a carbon nanotube quantum dot. The levels are ordered in shells consisting of two doublets with strong- and weak-tunnel couplings, leading to gate-dependent level renormalization. By comparison to a one- and two-shell model, this is shown to be a consequence of disorder-induced valley mixing in the nanotube. Moreover, a parallel magnetic field is shown to reduce this mixing and thus suppress the effects of tunnel renormalization.



قيم البحث

اقرأ أيضاً

79 - T. A. Costi 2019
Recent experiments have measured the signatures of the Kondo effect in the zero-field thermopower of strongly correlated quantum dots [Svilans {em et al.,} Phys. Rev. Lett. {bf 121}, 206801 (2018); Dutta {em et al.,} Nano Lett. {bf 19}, 506 (2019)]. They confirm the predicted Kondo-induced sign change in the thermopower, upon increasing the temperature through a gate-voltage dependent value $T_{1}gtrsim T_{rm K}$, where $T_{rm K}$ is the Kondo temperature. Here, we use the numerical renormalization group (NRG) method to investigate the effect of a finite magnetic field $B$ on the thermopower of such quantum dots. We show that, for fields $B$ exceeding a gate-voltage dependent value $B_{0}$, an additional sign change takes place in the Kondo regime at a temperature $T_{0}(Bgeq B_{0})>0$ with $T_0<T_1$. The field $B_{0}$ is comparable to, but larger than, the field $B_{c}$ at which the zero-temperature spectral function splits in a magnetic field. The validity of the NRG results for $B_{0}$ are checked by comparison with asymptotically exact higher-order Fermi-liquid calculations [Oguri {em et al.,} Phys. Rev. B {bf 97}, 035435 (2018)]. Our calculations clarify the field-dependent signatures of the Kondo effect in the thermopower of Kondo-correlated quantum dots and explain the recently measured trends in the $B$-field dependence of the thermoelectric response of such systems [Svilans {em et al.,} Phys. Rev. Lett. {bf 121}, 206801 (2018)].
65 - T. A. Costi 2019
Signatures of the Kondo effect in the electrical conductance of strongly correlated quantum dots are well understood both experimentally and theoretically, while those in the thermopower have been the subject of recent interest. Here, we extend theor etical work [T. A. Costi, Phys. Rev. B {bf 100}, 161106(R) (2019)] on the field-dependent thermopower of such systems, and carry out calculations in order to address a recent experiment on the field dependent thermoelectric response of Kondo-correlated quantum dots [A. Svilans {em et al.,} Phys. Rev. Lett. {bf 121}, 206801 (2018)]. In addition to the sign changes in the thermopower at temperatures $T_1(B)$ and $T_2(B)$ (present also for $B=0$) in the Kondo regime, an additional sign change was found [T. A. Costi, Phys. Rev. B {bf 100}, 161106(R) (2019)] at a temperature $T_0(B)<T_1(B)<T_2(B)$ for fields exceeding a gate-voltage dependent value $B_0$, where $B_0$ is comparable to, but larger, than the field $B_c$ at which the Kondo resonance splits. We describe the evolution of the Kondo-induced sign changes in the thermopower at temperatures $T_0(B),T_1(B)$ and $T_2(B)$ with magnetic field and gate voltage from the Kondo regime to the mixed valence and empty orbital regimes. By carrying out detailed NRG calculations for the above quantities we address the recent experiment by A. Svilans {em et al.,} Phys. Rev. Lett. {bf 121}, 206801 (2018), which measures the field-dependent thermoelectric response of InAs quantum dots exhibiting the Kondo effect, finding good agreement for the overall trends in the measured field- and temperature-dependent thermoelectric response as a function of gate voltage.
We study the Kondo effect in a CNT(left lead)-CNT(QD)-CNT(right lead) structure. Here CNT is a single-wall metallic carbon nanotube, for which 1) the valence and conduction bands of electrons with zero orbital angular momentum ($m=0$) coalesc at the two valley points ${bf{K}}$ and ${bf{K}}$ of the first Brillouin zone and 2) the energy spectrum of electrons with $m e 0$ has a gap whose size is proportional to $|m|$. Following adsorption of hydrogen atoms and application of an appropriately designed gate potential, electron energy levels in the CNT(QD) are tunable to have: 1) two-fold spin degeneracy; 2) two-fold isospin (valley) degeneracy; 3) three-fold orbital degeneracy $m=0,pm1$. As a result, an SU(12) Kondo effect is realized with remarkably high Kondo temperature. Unlike the SU(2) case, the low temperature conductance and magnetic susceptibility have a peak at finite temperature. Moreover, the magnetic susceptibilities for parallel and perpendicular magnetic fields (WRT the tube axis) display anisotropy with a universal ratio $chi_{rm{imp}}^parallel / chi_{rm{imp}}^perp=eta$ that depends only on the electrons orbital and spin $g$ factors.
356 - K. Kikoin , Y. Oreg 2006
We study the possibility to observe the two channel Kondo physics in multiple quantum dot heterostructures in the presence of magnetic field. We show that a fine tuning of the coupling parameters of the system and an external magnetic field may stabi lize the two channel Kondo critical point. We make predictions for behavior of the scaling of the differential conductance in the vicinity of the quantum critical point, as a function of magnetic field, temperature and source-drain potential.
We investigate charge pumping in carbon nanotube quantum dots driven by the electric field of a surface acoustic wave. We find that at small driving amplitudes, the pumped current reverses polarity as the conductance is tuned through a Coulomb blocka de peak using a gate electrode. We study the behavior as a function of wave amplitude, frequency and direction and develop a model in which our results can be understood as resulting from adiabatic charge redistribution between the leads and quantum dots on the nanotube.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا