ﻻ يوجد ملخص باللغة العربية
The Meissner effect and the associated perfect bulk diamagnetism together with zero resistance and gap opening are characteristic features of the superconducting state. In the pseudogap state of cuprates unusual diamagnetic signals as well as anomalous proximity effects have been detected but a Meissner effect has never been observed. Here we have probed the local diamagnetic response in the normal state of an underdoped La1.94Sr0.06CuO4 layer (up to 46 nm thick, critical temperature Tc < 5 K) which was brought into close contact with two nearly optimally doped La1.84Sr0.16CuO4 layers (Tc approx 32 K). We show that the entire barrier layer of thickness much larger than the typical c axis coherence lengths of cuprates exhibits a Meissner effect at temperatures well above Tc but below Tc. The temperature dependence of the effective penetration depth and superfluid density in different layers indicates that superfluidity with long-range phase coherence is induced in the underdoped layer by the proximity to optimally doped layers; however, this induced order is very sensitive to thermal excitation.
Many of the electronic properties of high-temperature cuprate superconductors (HTSC) are strongly dependent on the number of charge carriers put into the CuO$_2$ planes (doping). Superconductivity appears over a dome-shaped region of the doping-tempe
Geometrical Berry phase is recognized as having profound implications for the properties of electronic systems. Over the last decade, Berry phase has been essential to our understanding of new materials, including graphene and topological insulators.
Twisted bilayers of high-$T_c$ cuprate superconductors have been argued to form topological phases with spontaneously broken time reversal symmetry ${cal T}$ for certain twist angles. With the goal of helping to identify unambiguous signatures of the
Topological spin configurations in proximity to a superconductor have recently attracted great interest due to the potential application of the former in spintronics and also as another platform for realizing non-trivial topological superconductors.
In a recent study Viskadourakis et al. discovered that extremely underdoped La_2CuO_(4+x) is a relaxor ferroelectric and a magnetoelectric material at low temperatures. It is further observed that the magnetoelectric response is anisotropic for diffe