ترغب بنشر مسار تعليمي؟ اضغط هنا

First Commissioning of a Cryogenic Distillation Column for Low Radioactivity Underground Argon

84   0   0.0 ( 0 )
 نشر من قبل Henning Back
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the performance and commissioning of a cryogenic distillation column for low radioactivity underground argon at Fermi National Accelerator Laboratory. The distillation column is designed to accept a mixture of argon, helium, and nitrogen and return pure argon with a nitrogen contamination less than 10 ppm. In the first commissioning, we were able to run the distillation column in a continuous mode and produce argon that is 99.9% pure. After running in a batch mode, the argon purity was increased to 99.95%, with 500 ppm of nitrogen remaining. The efficiency of collecting the argon from the gas mixture was between 70% and 81%, at an argon production rate of 0.84-0.98 kg/day.

قيم البحث

اقرأ أيضاً

We report on the first large-scale production of low radioactivity argon from underground gas wells. Low radioactivity argon is of general interest, in particular for the construction of large scale WIMP dark matter searches and detectors of reactor neutrinos for non-proliferation efforts. Atmospheric argon has an activity of about 1 Bq/kg from the decays of 39Ar; the concentration of 39Ar in the underground argon we are collecting is at least a factor of 100 lower than this value. The argon is collected from a stream of gas from a CO2 well in southwestern Colorado with a Vacuum Pressure Swing Adsorption (VPSA) plant. The gas from the well contains argon at a concentration of 400-600 ppm, and the VPSA plant produces an output stream with an argon concentration at the level of 30,000-50,000 ppm (3-5%) in a single pass. This gas is sent for further processing to Fermilab where it is purified by cryogenic distillation. The argon production rate is presently 0.5 kg/day.
72 - Michael Woods 2013
LUX is a dual-phase xenon TPC designed for the direct detection of dark matter. Using 370 kg of xenon, LUX is capable of setting a WIMP-nucleon cross section limit at 2 x 10^-46 cm^2 after 300 days of running. LUX will surpass all existing dark matte r limits for WIMP masses above 10 GeV within weeks of beginning its science run. Following a successful six month surface run, the detector has recently been deployed underground, and we expect completed commission in the near future. Updates on status and results are provided.
An online cryogenic distillation system for the removal of krypton and radon from xenon was designed and constructed for PandaX-4T, a highly sensitive dark matter detection experiment. The krypton content in a commercial xenon product is expected to be reduced by 7 orders of magnitude with 99% xenon collection efficiency at a flow rate of 10 kg/h by design. The same system can reduce radon content in xenon by reversed operation, with an expected radon reduction factor of about 1.8 in PandaX-4T under a flow rate of 56.5 kg/h. The commissioning of this system was completed, with krypton and radon operations tested under respective working conditions. The krypton concentration of the product xenon was measured with an upper limit of 8.0 ppt.
Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained usi ng a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain Ar-39 at a level reduced by a factor (1.4 +- 0.2) x 10^3 relative to atmospheric argon. We report a background-free null result from (2616 +- 43) kg d of data, accumulated over 70.9 live-days. When combined with our previous search using an atmospheric argon, the 90 % C.L. upper limit on the WIMP-nucleon spin-independent cross section based on zero events found in the WIMP search regions, is 2.0 x 10^-44 cm^2 (8.6 x 10^-44 cm^2, 8.0 x 10^-43 cm^2) for a WIMP mass of 100 GeV/c^2 (1 TeV/c^2 , 10 TeV/c^2).
The Argon Dark Matter experiment is a ton-scale double phase argon Time Projection Chamber designed for direct Dark Matter searches. It combines the detection of scintillation light together with the ionisation charge in order to discriminate the bac kground (electron recoils) from the WIMP signals (nuclear recoils). After a successful operation on surface at CERN, the detector was recently installed in the underground Laboratorio Subterraneo de Canfranc, and the commissioning phase is ongoing. We describe the status of the installation and present first results from data collected underground with the detector filled with gas argon at room temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا