ترغب بنشر مسار تعليمي؟ اضغط هنا

The persistence of social signatures in human communication

307   0   0.0 ( 0 )
 نشر من قبل Jari Saram\\\"aki
 تاريخ النشر 2012
والبحث باللغة English




اسأل ChatGPT حول البحث

The social network maintained by a focal individual, or ego, is intrinsically dynamic and typically exhibits some turnover in membership over time as personal circumstances change. However, the consequences of such changes on the distribution of an egos network ties are not well understood. Here we use a unique 18-month data set that combines mobile phone calls and survey data to track changes in the ego networks and communication patterns of students making the transition from school to university or work. Our analysis reveals that individuals display a distinctive and robust social signature, captured by how interactions are distributed across different alters. Notably, for a given ego, these social signatures tend to persist over time, despite considerable turnover in the identity of alters in the ego network. Thus as new network members are added, some old network members are either replaced or receive fewer calls, preserving the overall distribution of calls across network members. This is likely to reflect the consequences of finite resources such as the time available for communication, the cognitive and emotional effort required to sustain close relationships, and the ability to make emotional investments.



قيم البحث

اقرأ أيضاً

Social structures influence a variety of human behaviors including mobility patterns, but the extent to which one individuals movements can predict anothers remains an open question. Further, latent information about an individuals mobility can be pr esent in the mobility patterns of both social and non-social ties, a distinction that has not yet been addressed. Here we develop a colocation network to distinguish the mobility patterns of an egos social ties from those of non-social colocators, individuals not socially connected to the ego but who nevertheless arrive at a location at the same time as the ego. We apply entropy and predictability measures to analyse and bound the predictive information of an individuals mobility pattern and the flow of that information from their top social ties and from their non-social colocators. While social ties generically provide more information than non-social colocators, we find that significant information is present in the aggregation of non-social colocators: 3-7 colocators can provide as much predictive information as the top social tie, and colocators can replace up to 85% of the predictive information about an ego, compared with social ties that can replace up to 94% of the egos predictability. The presence of predictive information among non-social colocators raises privacy concerns: given the increasing availability of real-time mobility traces from smartphones, individuals sharing data may be providing actionable information not just about their own movements but the movements of others whose data are absent, both known and unknown individuals.
Current models for opinion dynamics typically utilize a Poisson process for speaker selection, making the waiting time between events exponentially distributed. Human interaction tends to be bursty, though, having higher probabilities of either extre mely short waiting times or long periods of silence. To quantify the burstiness effects on the dynamics of social models, we place in competition two groups exhibiting different speakers waiting-time distributions. These competitions are implemented in the binary Naming Game, and show that the relevant aspect of the waiting-time distribution is the density of the head rather than that of the tail. We show that even with identical mean waiting times, a group with a higher density of short waiting times is favored in competition over the other group. This effect remains in the presence of nodes holding a single opinion that never changes, as the fraction of such committed individuals necessary for achieving consensus decreases dramatically when they have a higher head density than the holders of the competing opinion. Finally, to quantify differences in burstiness, we introduce the expected number of small-time activations and use it to characterize the early-time regime of the system.
Internet communication channels, e.g., Facebook, Twitter, and email, are multiplex networks that facilitate interaction and information-sharing among individuals. During brief time periods users often use a single communication channel, but then comm unication channel alteration (CCA) occurs. This means that we must refine our understanding of the dynamics of social contagions. We propose a non-Markovian behavior spreading model in multiplex networks that takes into account the CCA mechanism, and we develop a generalized edge-based compartmental method to describe the spreading dynamics. Through extensive numerical simulations and theoretical analyses we find that the time delays induced by CCA slow the behavior spreading but do not affect the final adoption size. We also find that the CCA suppresses behavior spreading. On two coupled random regular networks, the adoption size exhibits hybrid growth, i.e., it grows first continuously and then discontinuously with the information transmission probability. CCA in ER-SF multiplex networks in which two subnetworks are ErdH{o}s-R{e}nyi (ER) and scale-free (SF) introduces a crossover from continuous to hybrid growth in adoption size versus information transmission probability. Our results extend our understanding of the role of CCA in spreading dynamics, and may elicit further research.
In social systems, people communicate with each other and form groups based on their interests. The pattern of interactions, the network, and the ideas that flow on the network naturally evolve together. Researchers use simple models to capture the f eedback between changing network patterns and ideas on the network, but little is understood about the role of past events in the feedback process. Here we introduce a simple agent-based model to study the coupling between peoples ideas and social networks, and better understand the role of history in dynamic social networks. We measure how information about ideas can be recovered from information about network structure and, the other way around, how information about network structure can be recovered from information about ideas. We find that it is in general easier to recover ideas from the network structure than vice versa.
With the availability of cell phones, internet, social media etc. the interconnectedness of people within most societies has increased drastically over the past three decades. Across the same timespan, we are observing the phenomenon of increasing le vels of fragmentation in society into relatively small and isolated groups that have been termed filter bubbles, or echo chambers. These pose a number of threats to open societies, in particular, a radicalisation in political, social or cultural issues, and a limited access to facts. In this paper we show that these two phenomena might be tightly related. We study a simple stochastic co-evolutionary model of a society of interacting people. People are not only able to update their opinions within their social context, but can also update their social links from collaborative to hostile, and vice versa. The latter is implemented such that social balance is realised. We find that there exists a critical level of interconnectedness, above which society fragments into small sub-communities that are positively linked within and hostile towards other groups. We argue that the existence of a critical communication density is a universal phenomenon in all societies that exhibit social balance. The necessity arises from the underlying mathematical structure of a phase transition phenomenon that is known from the theory of a kind of disordered magnets called spin glasses. We discuss the consequences of this phase transition for social fragmentation in society.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا