ترغب بنشر مسار تعليمي؟ اضغط هنا

Decidability of uniform recurrence of morphic sequences

113   0   0.0 ( 0 )
 نشر من قبل Fabien Durand
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Fabien Durand




اسأل ChatGPT حول البحث

We prove that the uniform recurrence of morphic sequences is decidable. For this we show that the number of derived sequences of uniformly recurrent morphic sequences is bounded. As a corollary we obtain that uniformly recurrent morphic sequences are primitive substitutive sequences.



قيم البحث

اقرأ أيضاً

101 - Fabien Durand 2018
We prove decidability results on the existence of constant subsequences of uniformly recurrent morphic sequences along arithmetic progressions. We use spectral properties of the subshifts they generate to give a first algorithm deciding whether, give n p $in$ N, there exists such a constant subsequence along an arithmetic progression of common difference p. In the special case of uniformly recurrent automatic sequences we explicitely describe the sets of such p by means of automata.
We find an asymptotic enumeration formula for the number of simple $r$-uniform hypergraphs with a given degree sequence, when the number of edges is sufficiently large. The formula is given in terms of the solution of a system of equations. We give s ufficient conditions on the degree sequence which guarantee existence of a solution to this system. Furthermore, we solve the system and give an explicit asymptotic formula when the degree sequence is close to regular. This allows us to establish several properties of the degree sequence of a random $r$-uniform hypergraph with a given number of edges. More specifically, we compare the degree sequence of a random $r$-uniform hypergraph with a given number edges to certain models involving sequences of binomial or hypergeometric random variables conditioned on their sum.
Given a set of integers with no three in arithmetic progression, we construct a Stanley sequence by adding integers greedily so that no arithmetic progression is formed. This paper offers two main contributions to the theory of Stanley sequences. Fir st, we characterize well-structured Stanley sequences as solutions to constraints in modular arithmetic, defining the modular Stanley sequences. Second, we introduce the basic Stanley sequences, where elements arise as the sums of subsets of a basis sequence, which in the simplest case is the powers of 3. Applications of our results include the construction of Stanley sequences with arbitrarily large gaps between terms, answering a weak version of a problem by ErdH{o}s et al. Finally, we generalize many results about Stanley sequences to $p$-free sequences, where $p$ is any odd prime.
240 - Alexandre Bazin 2018
We bound the number of minimal hypergraph transversals that arise in tri-partite 3-uniform hypergraphs, a class commonly found in applications dealing with data. Let H be such a hypergraph on a set of vertices V. We give a lower bound of 1.4977 |V | and an upper bound of 1.5012 |V | .
In network modeling of complex systems one is often required to sample random realizations of networks that obey a given set of constraints, usually in form of graph measures. A much studied class of problems targets uniform sampling of simple graphs with given degree sequence or also with given degree correlations expressed in the form of a joint degree matrix. One approach is to use Markov chains based on edge switches (swaps) that preserve the constraints, are irreducible (ergodic) and fast mixing. In 1999, Kannan, Tetali and Vempala (KTV) proposed a simple swap Markov chain for sampling graphs with given degree sequence and conjectured that it mixes rapidly (in poly-time) for arbitrary degree sequences. While the conjecture is still open, it was proven for special degree sequences, in particular, for those of undirected and directed regular simple graphs, of half-regular bipartite graphs, and of graphs with certain bounded maximum degrees. Here we prove the fast mixing KTV conjecture for novel, exponentially large classes of irregular degree sequences. Our method is based on a canonical decomposition of degree sequences into split graph degree sequences, a structural theorem for the space of graph realizations and on a factorization theorem for Markov chains. After introducing bipartite splitted degree sequences, we also generalize the canonical split graph decomposition for bipartite and directed graphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا