ﻻ يوجد ملخص باللغة العربية
To acquire the best path-entangled photon Fock states for robust quantum optical metrology with parity detection, we calculate phase information from a lossy interferometer by using twin entangled Fock states. We show that (a) when loss is less than 50% twin entangled Fock states with large photon number difference give higher visibility while when loss is higher than 50% the ones with less photon number difference give higher visibility; (b) twin entangled Fock states with large photon number difference give sub-shot-noise limit sensitivity for phase detection in a lossy environment. This result provides a reference on what particular path-entangled Fock states are useful for real world metrology applications.
We propose a class of path-entangled photon Fock states for robust quantum optical metrology, imaging, and sensing in the presence of loss. We model propagation loss with beam-splitters and derive a reduced density matrix formalism from which we exam
We study how useful random states are for quantum metrology, i.e., surpass the classical limits imposed on precision in the canonical phase estimation scenario. First, we prove that random pure states drawn from the Hilbert space of distinguishable p
It has been proposed and demonstrated that path-entangled Fock states (PEFSs) are robust against photon loss over NOON states [S. D. Huver emph{et al.}, Phys. Rev. A textbf{78}, 063828 (2008)]. However, the demonstration was based on a measurement sc
Although the path-integral formalism is known to be equivalent to conventional quantum mechanics, it is not generally obvious how to implement path-based calculations for multi-qubit entangled states. Whether one takes the formal view of entangled st
Device-independent quantum key distribution (DI-QKD) represents one of the most fascinating challenges in quantum communication, exploiting concepts of fundamental physics, namely Bell tests of nonlocality, to ensure the security of a communication l