ترغب بنشر مسار تعليمي؟ اضغط هنا

Hyperfine-Induced Decay in Triple Quantum Dots

53   0   0.0 ( 0 )
 نشر من قبل Thaddeus Ladd
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Thaddeus D. Ladd




اسأل ChatGPT حول البحث

We analyze the effects of hyperfine interactions on coherent control experiments in triple quantum dots. By exploiting Hamiltonian symmetries and the SU(3) structure of the triple-dot system under pseudo-exchange and longitudinal hyperfine couplings, we provide analytic formulae for the hyperfine decay of triple-dot Rabi and dephasing experiments.

قيم البحث

اقرأ أيضاً

269 - R. Zitko , J. Bonca , A. Ramsak 2006
Numerical analysis of the simplest odd-numbered system of coupled quantum dots reveals an interplay between magnetic ordering, charge fluctuations and the tendency of itinerant electrons in the leads to screen magnetic moments. The transition from lo cal-moment to molecular-orbital behavior is visible in the evolution of correlation functions as the inter-dot coupling is increased. Resulting novel Kondo phases are presented in a phase diagram which can be sampled by measuring the zero-bias conductance. We discuss the origin of the even-odd effects by comparing with the double quantum dot.
208 - Siqing Yu , Yechao Zhu , 2008
Recently, de Visser and Blaauboer [Phys. Rev. Lett. {bf 96}, 246801 (2006)] proposed the most efficient deterministic teleportation protocol $cal T$ for electron spins in a semiconductor nanostructure consisting of a single and a double quantum dot. However, it is as yet unknown if $cal T$ can be completed before decoherence sets in. In this paper we analyze the detrimental effect of nuclear spin baths, the main source of decoherence, on $cal T$. We show that nonclassical teleportation fidelity can be achieved with $cal T$ provided certain conditions are met. Our study indicates that realization of quantum computation with quantum dots is indeed promising.
Tunneling in a quantum coherent structure is not restricted to only nearest neighbours. Hopping between distant sites is possible via the virtual occupation of otherwise avoided intermediate states. Here we report the observation of long range transi tions in the transport through three quantum dots coupled in series. A single electron is delocalized between the left and right quantum dots while the centre one remains always empty. Superpositions are formed and both charge and spin are exchanged between the outermost dots. Detection of the process is achieved via the observation of narrow resonances, insensitive to the transport Pauli spin blockade.
Environmental noise usually hinders the efficiency of charge transport through coherent quantum systems; an exception is dephasing-assisted transport (DAT). We show that linear triple quantum dots in a transport configuration and subjected to pure de phasing exhibit DAT if the coupling to the drain reservoir exceeds a threshold. DAT occurs for arbitrarily weak dephasing and the enhancement can be directly controlled by the coupling to the drain. Moreover, for specific settings, the enhanced current is accompanied by a reduction in relative shot noise. We identify the quantum Zeno effect and long-distance tunnelling as underlying dynamical processes involved in dephasing-assisted and -suppressed transport. Our analytical results are obtained by using the density matrix formalism and the characteristic polynomial approach to full counting statistics.
We report measurements of electron spin echo envelope modulation (ESEEM) performed at millikelvin temperatures in a custom-built high-sensitivity spectrometer based on superconducting micro-resonators. The high quality factor and small mode volume (d own to 0.2pL) of the resonator allow to probe a small number of spins, down to $5cdot 10^2$. We measure 2-pulse ESEEM on two systems: erbium ions coupled to $^{183}$W nuclei in a natural-abundance $text{CaWO}_4$ crystal, and bismuth donors coupled to residual $^{29}$Si nuclei in a silicon substrate that was isotopically enriched in the $^{28}$Si isotope. We also measure 3- and 5-pulse ESEEM for the bismuth donors in silicon. Quantitative agreement is obtained for both the hyperfine coupling strength of proximal nuclei, and the nuclear spin concentration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا