ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical approaches for multidimensional simulations of stellar explosions

217   0   0.0 ( 0 )
 نشر من قبل Ke-Jung Chen
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ke-Jung Chen




اسأل ChatGPT حول البحث

We introduce numerical algorithms for initializing multidimensional simulations of stellar explosions with 1D stellar evolution models. The initial mapping from 1D profiles onto multidimensional grids can generate severe numerical artifacts, one of the most severe of which is the violation of conservation laws for physical quantities. We introduce a numerical scheme for mapping 1D spherically-symmetric data onto multidimensional meshes so that these physical quantities are conserved. We verify our scheme by porting a realistic 1D Lagrangian stellar profile to the new multidimensional Eulerian hydro code CASTRO. Our results show that all important features in the profiles are reproduced on the new grid and that conservation laws are enforced at all resolutions after mapping. We also introduce a numerical scheme for initializing multidimensional supernova simulations with realistic perturbations predicted by 1D stellar evolution models. Instead of seeding 3D stellar profiles with random perturbations, we imprint them with velocity perturbations that reproduce the Kolmogorov energy spectrum expected for highly turbulent convective regions in stars. Our models return Kolmogorov energy spectra and vortex structures like those in turbulent flows before the modes become nonlinear. Finally, we describe approaches to determining the resolution for simulations required to capture fluid instabilities and nuclear burning. Our algorithms are applicable to multidimensional simulations besides stellar explosions that range from astrophysics to cosmology.

قيم البحث

اقرأ أيضاً

342 - Ke-Jung Chen , 2011
Mapping one-dimensional stellar profiles onto multidimensional grids as initial conditions for hydrodynamics calculations can lead to numerical artifacts, one of the most severe of which is the violation of conservation laws for physical quantities s uch as energy and mass. Here we introduce a numerical scheme for mapping one-dimensional spherically-symmetric data onto multidimensional meshes so that these physical quantities are conserved. We validate our scheme by porting a realistic 1D Lagrangian stellar profile to the new multidimensional Eulerian hydro code CASTRO. Our results show that all important features in the profiles are reproduced on the new grid and that conservation laws are enforced at all resolutions after mapping.
How do massive stars explode? Progress toward the answer is driven by increases in compute power. Petascale supercomputers are enabling detailed three-dimensional simulations of core-collapse supernovae. These are elucidating the role of fluid instab ilities, turbulence, and magnetic field amplification in supernova engines.
In this paper we present solutions to three short comings of Smoothed Particles Hydrodynamics (SPH) encountered in previous work when applying it to Giant Impacts. First we introduce a novel method to obtain accurate SPH representations of a planets equilibrium initial conditions based on equal area tessellations of the sphere. This allows one to imprint an arbitrary density and internal energy profile with very low noise which substantially reduces computation because these models require no relaxation prior to use. As a consequence one can significantly increase the resolution and more flexibly change the initial bodies to explore larger parts of the impact parameter space in simulations. The second issue addressed is the proper treatment of the matter/vacuum boundary at a planets surface with a modified SPH density estimator that properly calculates the density stabilizing the models and avoiding an artificially low density atmosphere prior to impact. Further we present a novel SPH scheme that simultaneously conserves both energy and entropy for an arbitrary equation of state. This prevents loss of entropy during the simulation and further assures that the material does not evolve into unphysical states. Application of these modifications to impact simulations for different resolutions up to $6.4 cdot 10^6$ particles show a general agreement with prior result. However, we observe resolution dependent differences in the evolution and composition of post collision ejecta. This strongly suggests that the use of more sophisticated equations of state also demands a large number of particles in such simulations.
82 - Emily M. Levesque 2016
The host galaxies of nearby (z<0.3) core-collapse supernovae and long-duration gamma-ray bursts offer an excellent means of probing the environments and populations that produce these events varied massive progenitors. These same young stellar progen itors make LGRBs and SNe valuable and potentially powerful tracers of star formation, metallicity, the IMF, and the end phases of stellar evolution. However, properly utilizing these progenitors as tools requires a thorough understanding of their formation and, consequently, the physical properties of their parent host environments. This review looks at some of the recent work on LGRB and SN hosts with resolved environments that allows us to probe the precise explosion sites and surrounding environments of these events in incredible detail.
Recent observations as well as theoretical studies of YSO jets suggest the presence of two steady components: a disk wind type outflow needed to explain the observed high mass loss rates and a stellar wind type outflow probably accounting for the obs erved stellar spin down. In this framework, we construct numerical two-component jet models by properly mixing an analytical disk wind solution with a complementary analytically derived stellar outflow. Their combination is controlled by both spatial and temporal parameters, in order to address different physical conditions and time variable features. We study the temporal evolution and the interaction of the two jet components on both small and large scales. The simulations reach steady state configurations close to the initial solutions. Although time variability is not found to considerably affect the dynamics, flow fluctuations generate condensations, whose large scale structures have a strong resemblance to observed YSO jet knots.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا