ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved protocols of secure quantum communication using W states

69   0   0.0 ( 0 )
 نشر من قبل Anindita Banerjee
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, Hwang et al. [Eur. Phys. J. D. 61, 785 (2011)] and Yuan et al. [Int. J. Theo. Phys. 50, 2403 (2011)] have proposed two efficient protocols of secure quantum communication using 3-qubit and 4-qubit symmetric W state respectively. These two dense coding based protocols are generalized and their efficiencies are considerably improved. Simple bounds on the qubit efficiency of deterministic secure quantum communication (DSQC) and quantum secure direct communication (QSDC) protocols are obtained and it is shown that dense coding is not essential for designing of maximally efficient DSQC and QSDC protocols. This fact is used to design maximally efficient protocols of DSQC and QSDC using 3-qubit and 4-qubit W states.

قيم البحث

اقرأ أيضاً

With the emergence of quantum computing and quantum networks, many communication protocols that take advantage of the unique properties of quantum mechanics to achieve a secure bidirectional exchange of information, have been proposed. In this study, we propose a new quantum communication protocol, called Continuous Quantum Secure Dialogue (CQSD), that allows two parties to continuously exchange messages without halting while ensuring the privacy of the conversation. Compared to existing protocols, CQSD improves the efficiency of quantum communication. In addition, we offer an implementation of the CQSD protocol using the Qiskit framework. Finally, we conduct a security analysis of the CQSD protocol in the context of several common forms of attack.
The unique features of quantum walk, such as the possibility of the walker to be in superposition ofthe position space and get entangled with the position space, provides inherent advantages that canbe captured to design highly secure quantum communi cation protocols. Here we propose two quan-tum direct communication protocols, a Quantum Secure Direct Communication (QSDC) protocoland a Controlled Quantum Dialogue (CQD) protocol using discrete-time quantum walk on a cycle.The proposed protocols are unconditionally secure against various attacks such as the intercept-resend attack, the denial of service attack, and the man-in-the-middle attack. Additionally, theproposed CQD protocol is shown to be unconditionally secure against an untrusted service providerand both the protocols are shown more secure against the intercept resend attack as compared tothe qubit based LM05/DL04 protocol.
A general protocol in Quantum Information and Communication relies in the ability of producing, transmitting and reconstructing, in general, qunits. In this letter we show for the first time the experimental implementation of these three basic steps on a pure state in a three dimensional space, by means of the orbital angular momentum of the photons. The reconstruction of the qutrit is performed with tomographic techniques and a Maximum-Likelihood estimation method. In this way we also demonstrate that we can perform any transformation in the three dimensional space.
No-cloning theorem, a profound fundamental principle of quantum mechanics, also provides a crucial practical basis for secure quantum communication. The security of communication can be ultimately guaranteed if the output fidelity via communication c hannel is above the no-cloning bound (NCB). In quantum communications using continuous-variable (CV) systems, Gaussian states, more specifically, coherent states have been widely studied as inputs, but less is known for non-Gaussian states. We aim at exploring quantum communication covering CV states comprehensively with distinct sets of unknown states properly defined. Our main results here are (i) to establish the NCB for a broad class of quantum non-Gaussian states including Fock states, their superpositions and Schrodinger-cat states and (ii) to examine the relation between NCB and quantum non-Gaussianity (QNG). We find that NCB typically decreases with QNG. Remarkably, this does not mean that quantum non-Gaussian states are less demanding for secure communication. By extending our study to mixed-state inputs, we demonstrate that QNG specifically in terms of Wigner negativity requires more resources to achieve output fidelity above NCB in CV teleportation. The more non-Gaussian, the harder to achieve secure communication, which can have crucial implications for CV quantum communications.
Quantum communication provides an absolute security advantage, and it has been widely developed over the past 30 years. As an important branch of quantum communication, quantum secure direct communication (QSDC) promotes high security and instantaneo usness in communication through directly transmitting messages over a quantum channel. The full implementation of a quantum protocol always requires the ability to control the transfer of a message effectively in the time domain; thus, it is essential to combine QSDC with quantum memory to accomplish the communication task. In this paper, we report the experimental demonstration of QSDC with state-of-the-art atomic quantum memory for the first time in principle. We used the polarization degrees of freedom of photons as the information carrier, and the fidelity of entanglement decoding was verified as approximately 90%. Our work completes a fundamental step toward practical QSDC and demonstrates a potential application for long-distance quantum communication in a quantum network.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا