ترغب بنشر مسار تعليمي؟ اضغط هنا

Compensating Interpolation Distortion by Using New Optimized Modular Method

146   0   0.0 ( 0 )
 نشر من قبل Mohammad Tofighi
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A modular method was suggested before to recover a band limited signal from the sample and hold and linearly interpolated (or, in general, an nth-order-hold) version of the regular samples. In this paper a novel approach for compensating the distortion of any interpolation based on modular method has been proposed. In this method the performance of the modular method is optimized by adding only some simply calculated coefficients. This approach causes drastic improvement in terms of signal-to-noise ratios with fewer modules compared to the classical modular method. Simulation results clearly confirm the improvement of the proposed method and also its superior robustness against additive noise.



قيم البحث

اقرأ أيضاً

A modular method was suggested before to recover a band limited signal from the sample and hold and linearly interpolated (or, in general, an nth-order-hold) version of the regular samples. In this paper a novel approach for compensating the distorti on of any interpolation based on modular method has been proposed. In this method the performance of the modular method is optimized by adding only some simply calculated coefficients. This approach causes drastic improvement in terms of SNRs with fewer modules compared to the classical modular method. Simulation results clearly confirm the improvement of the proposed method and also its superior robustness against additive noise.
In this paper, we investigate the problem of designing compact support interpolation kernels for a given class of signals. By using calculus of variations, we simplify the optimization problem from an infinite nonlinear problem to a finite dimensiona l linear case, and then find the optimum compact support function that best approximates a given filter in the least square sense (l2 norm). The benefit of compact support interpolants is the low computational complexity in the interpolation process while the optimum compact support interpolant gaurantees the highest achivable Signal to Noise Ratio (SNR). Our simulation results confirm the superior performance of the proposed splines compared to other conventional compact support interpolants such as cubic spline.
Rate-Distortion Optimized Quantization (RDOQ) has played an important role in the coding performance of recent video compression standards such as H.264/AVC, H.265/HEVC, VP9 and AV1. This scheme yields significant reductions in bit-rate at the expens e of relatively small increases in distortion. Typically, RDOQ algorithms are prohibitively expensive to implement on real-time hardware encoders due to their sequential nature and their need to frequently obtain entropy coding costs. This work addresses this limitation using a neural network-based approach, which learns to trade-off rate and distortion during offline supervised training. As these networks are based solely on standard arithmetic operations that can be executed on existing neural network hardware, no additional area-on-chip needs to be reserved for dedicated RDOQ circuitry. We train two classes of neural networks, a fully-convolutional network and an auto-regressive network, and evaluate each as a post-quantization step designed to refine cheap quantization schemes such as scalar quantization (SQ). Both network architectures are designed to have a low computational overhead. After training they are integrated into the HM 16.20 implementation of HEVC, and their video coding performance is evaluated on a subset of the H.266/VVC SDR common test sequences. Comparisons are made to RDOQ and SQ implementations in HM 16.20. Our method achieves 1.64% BD-rate savings on luminosity compared to the HM SQ anchor, and on average reaches 45% of the performance of the iterative HM RDOQ algorithm.
The goal of this paper is to design compact support basis spline functions that best approximate a given filter (e.g., an ideal Lowpass filter). The optimum function is found by minimizing the least square problem ($ell$2 norm of the difference betwe en the desired and the approximated filters) by means of the calculus of variation; more precisely, the introduced splines give optimal filtering properties with respect to their time support interval. Both mathematical analysis and simulation results confirm the superiority of these splines.
Learning to synthesize high frame rate videos via interpolation requires large quantities of high frame rate training videos, which, however, are scarce, especially at high resolutions. Here, we propose unsupervised techniques to synthesize high fram e rate videos directly from low frame rate videos using cycle consistency. For a triplet of consecutive frames, we optimize models to minimize the discrepancy between the center frame and its cycle reconstruction, obtained by interpolating back from interpolated intermediate frames. This simple unsupervised constraint alone achieves results comparable with supervision using the ground truth intermediate frames. We further introduce a pseudo supervised loss term that enforces the interpolated frames to be consistent with predictions of a pre-trained interpolation model. The pseudo supervised loss term, used together with cycle consistency, can effectively adapt a pre-trained model to a new target domain. With no additional data and in a completely unsupervised fashion, our techniques significantly improve pre-trained models on new target domains, increasing PSNR values from 32.84dB to 33.05dB on the Slowflow and from 31.82dB to 32.53dB on the Sintel evaluation datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا