ﻻ يوجد ملخص باللغة العربية
In evolution equations for a complex amplitude, the phase obeys a much more intricate equation than the amplitude. Nevertheless, general methods should be applicable to both variables. On the example of the traveling wave reduction of the complex cubic-quintic Ginzburg-Landau equation (CGL5), we explain how to overcome the difficulties arising in two such methods: (i) the criterium that the sum of residues of an elliptic solution should be zero, (ii) the construction of a first order differential equation admitting the given equation as a differential consequence (subequation method).
Solutions of the general cubic complex Ginzburg-Landau equation comprising multiple spiral waves are considered. For parameters close to the vortex limit, and for a system of spiral waves with well-separated centres, laws of motion of the centres are
After a brief introduction to the complex Ginzburg-Landau equation, some of its important features in two space dimensions are reviewed. A comprehensive study of the various phases observed numerically in large systems over the whole parameter space
In the present work we illustrate that classical but nonlinear systems may possess features reminiscent of quantum ones, such as memory, upon suitable external perturbation. As our prototypical example, we use the two-dimensional complex Ginzburg-Lan
In this chapter we review recent results concerning localized and extended dissipative solutions of the discrete complex Ginzburg-Landau equation. In particular, we discuss discrete diffraction effects arising both from linear and nonlinear propertie
It was recently shown [V.V. Cherny, T. Byrnes, A.N. Pyrkov, textit{Adv. Quantum Technol.} textbf{2019} textit{2}, 1800087] that the nonlinear Schrodinger equation with a simplified dissipative perturbation of special kind features a zero-velocity sol