ﻻ يوجد ملخص باللغة العربية
A recent measurement of the dielectronic recombination (DR) of W^20+ [Schippers et al Phys. Rev. A83, 012711 (2011)] found an exceptionally large contribution from near threshold resonances (<1eV). This still affected the Maxwellian rate coefficient at much higher temperatures. The experimental result was found to be a factor 4 or more than that currently in use in the 100-300eV range which is of relevance for modeling magnetic fusion plasmas. We have carried-out DR calculations with AUTOSTRUCTURE which include all significant single electron promotions. Our intermediate coupling (IC) results are more than a factor of 4 larger than our LS-coupling ones at 1eV but still lie a factor 3 below experiment here. If we assume complete (chaotic) mixing of near-threshold autoionizing states then our results come into agreement (to within 20%) with experiment below about 2eV. Our total IC Maxwellian rate coefficients are 50-30% smaller than those based-on experiment over 100-300eV.
We present a theoretical investigation of dielectronic recombination (DR) of Ar-like ions that sheds new light on the behavior of the rate coefficient at low-temperatures where these ions form in photoionized plasmas. We provide results for the total
Dielectronic recombination (DR) of xenonlike W20+ forming W19+ has been studied experimentally at a heavy-ion storage-ring. A merged-beams method has been employed for obtaining absolute rate coefficients for electron-ion recombination in the collisi
We have developed a general model for determining density-dependent effective dielectronic recombination (DR) rate coefficients in order to explore finite-density effects on the ionization balance of plasmas. Our model consists of multiplying by a su
Dielectronic recombination has been investigated for Delta-n = 1 resonances of ground-state Li+(1s^2) and for Delta-n = 0 resonances of metastable Li+(1s2s ^3S). The ground-state spectrum shows three prominent transitions between 53 and 64 eV, while
Isotope shifts in dielectronic recombination spectra were studied for Li-like ^{A}Nd^{57+} ions with A=142 and A=150. From the displacement of resonance positions energy shifts delta E^{142,150}(2s-2p_1/2)= 40.2(3)(6) meV (stat)(sys)) and delta E^{14