ترغب بنشر مسار تعليمي؟ اضغط هنا

Suppression of Dielectronic Recombination Due to Finite Density Effects

112   0   0.0 ( 0 )
 نشر من قبل Dragan Nikoli\\'c
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have developed a general model for determining density-dependent effective dielectronic recombination (DR) rate coefficients in order to explore finite-density effects on the ionization balance of plasmas. Our model consists of multiplying by a suppression factor those highly-accurate total zero-density DR rate coefficients which have been produced from state-of-the-art theoretical calculations and which have been benchmarked by experiment. The suppression factor is based-upon earlier detailed collision-radiative calculations which were made for a wide range of ions at various densities and temperatures, but used a simplified treatment of DR. A general suppression formula is then developed as a function of isoelectronic sequence, charge, density, and temperature. These density-dependent effective DR rate coefficients are then used in the plasma simulation code Cloudy to compute ionization balance curves for both collisionally ionized and photoionized plasmas at very low (ne = 1 cm^-3) and finite (ne=10^10 cm^-3) densities. We find that the denser case is significantly more ionized due to suppression of DR, warranting further studies of density effects on DR by detailed collisional-radiative calculations which utilize state-of-the-art partial DR rate coefficients. This is expected to impact the predictions of the ionization balance in denser cosmic gases such as those found in nova and supernova shells, accretion disks, and the broad emission line regions in active galactic nuclei.

قيم البحث

اقرأ أيضاً

49 - Jagjit Kaur , T. W. Gorczyca , 2018
We aim to present a comprehensive theoretical investigation of dielectronic recombination (DR) of the silicon-like isoelectronic sequence and provide DR and radiative recombination (RR) data that can be used within a generalized collisional-radiative modelling framework. Total and final-state level-resolved DR and RR rate coefficients for the ground and metastable initial levels of 16 ions between $rm{P^{+}}$ and $rm{Zn^{16+}}$ are determined. We carried out multi-configurational Breit-Pauli (MCBP) DR calculations for silicon-like ions in the independent processes, isolated resonance, distorted wave (IPIRDW) approximation. Both $Delta n_c =0$ and $Delta n_c =1$ core excitations are included using $LS$ and intermediate coupling schemes. Results are presented for a selected number of ions and compared to all other existing theoretical and experimental data. The total dielectronic and radiative recombination rate coefficients for the ground state are presented in tabulated form for easy implementation into spectral modelling codes. These data can also be accessed from the Atomic Data and Analysis Structure (ADAS) OPEN-ADAS database. This work is a part of an assembly of a dielectronic recombination database for the modelling of dynamic finite-density plasmas.
We present a theoretical investigation of dielectronic recombination (DR) of Ar-like ions that sheds new light on the behavior of the rate coefficient at low-temperatures where these ions form in photoionized plasmas. We provide results for the total and partial Maxwellian-averaged DR rate coefficients from the initial ground level of K II -- Zn XIII ions. It is expected that these new results will advance the accuracy of the ionization balance for Ar-like M-shell ions and pave the way towards a detailed modeling of astrophysically relevant X-ray absorption features. We utilize the AUTOSTRUCTURE computer code to obtain the accurate core-excitation thresholds in target ions and carry out multiconfiguration Breit-Pauli (MCBP) calculations of the DR cross section in the independent-processes, isolated-resonance, distorted-wave (IPIRDW) approximation. Our results mediate the complete absence of direct DR calculations for certain Ar-like ions and question the reliability of the existing empirical rate formulas, often inferred from renormalized data within this isoelectronic sequence.
Dielectronic recombination (DR) of xenonlike W20+ forming W19+ has been studied experimentally at a heavy-ion storage-ring. A merged-beams method has been employed for obtaining absolute rate coefficients for electron-ion recombination in the collisi on energy range 0-140 eV. The measured rate coefficient is dominated by strong DR resonances even at the lowest experimental energies. At plasma temperatures where the fractional abundance of W20+ is expected to peak in a fusion plasma, the experimentally derived plasma recombination rate coefficient is over a factor of 4 larger than the theoretically-calculated rate coefficient which is currently used in fusion plasma modeling. The largest part of this discrepancy stems most probably from the neglect in the theoretical calculations of DR associated with fine-structure excitations of the W20+([Kr] 4d10 4f8) ion core.
We report linear polarization measurements of x rays emitted due to dielectronic recombination into highly charged krypton ions. The ions in the He-like through O-like charge states were populated in an electron beam ion trap with the electron beam e nergy adjusted to recombination resonances in order to produce $Kalpha$ x rays. The x rays were detected with a newly developed Compton polarimeter using a beryllium scattering target and 12 silicon x-ray detector diodes sampling the azimuthal distribution of the scattered x rays. The extracted degrees of linear polarization of several dielectronic recombination transitions agree with results of relativistic distorted--wave calculations. We also demonstrate a high sensitivity of the polarization to the Breit interaction, which is remarkable for a medium-$Z$ element like krypton. The experimental results can be used for polarization diagnostics of hot astrophysical and laboratory fusion plasmas.
Dielectronic recombination has been investigated for Delta-n = 1 resonances of ground-state Li+(1s^2) and for Delta-n = 0 resonances of metastable Li+(1s2s ^3S). The ground-state spectrum shows three prominent transitions between 53 and 64 eV, while the metastable spectrum exhibits many transitions with energies < 3.2 eV. Reasonably good agreement of R-matrix, LS coupling calculations with the measured recombination rate coefficient is obtained. The time dependence of the recombination rate yields a radiative lifetime of 52.2 +- 5.0 s for the 2 ^3S level of Li+.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا