ترغب بنشر مسار تعليمي؟ اضغط هنا

The Impact of Small-Angle Scattering on Ballistic Transport in Quantum Dots

131   0   0.0 ( 0 )
 نشر من قبل Adam Micolich
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Disorder increasingly affects performance as electronic devices are reduced in size. The ionized dopants used to populate a device with electrons are particularly problematic, leading to unpredictable changes in the behavior of devices such as quantum dots each time they are cooled for use. We show that a quantum dot can be used as a highly sensitive probe of changes in disorder potential, and that by removing the ionized dopants and populating the dot electrostatically, its electronic properties become reproducible with high fidelity after thermal cycling to room temperature. Our work demonstrates that the disorder potential has a significant, perhaps even dominant, influence on the electron dynamics, with important implications for `ballistic transport in quantum dots.



قيم البحث

اقرأ أيضاً

Environmental noise usually hinders the efficiency of charge transport through coherent quantum systems; an exception is dephasing-assisted transport (DAT). We show that linear triple quantum dots in a transport configuration and subjected to pure de phasing exhibit DAT if the coupling to the drain reservoir exceeds a threshold. DAT occurs for arbitrarily weak dephasing and the enhancement can be directly controlled by the coupling to the drain. Moreover, for specific settings, the enhanced current is accompanied by a reduction in relative shot noise. We identify the quantum Zeno effect and long-distance tunnelling as underlying dynamical processes involved in dephasing-assisted and -suppressed transport. Our analytical results are obtained by using the density matrix formalism and the characteristic polynomial approach to full counting statistics.
We theoretically investigate transport signatures of quantum interference in highly symmetric double quantum dots in a parallel geometry and demonstrate that extremely weak symmetry-breaking effects can have a dramatic influence on the current. Our c alculations are based on a master equation where quantum interference enters as non-diagonal elements of the density matrix of the double quantum dots. We also show that many results have a physically intuitive meaning when recasting our equations as Bloch-like equations for a pseudo spin associated with the dot occupation. In the perfectly symmetric configuration with equal tunnel couplings and orbital energies of both dots, there is no unique stationary state density matrix. Interestingly, however, adding arbitrarily small symmetry-breaking terms to the tunnel couplings or orbital energies stabilizes a stationary state either with or without quantum interference, depending on the competition between these two perturbations. The different solutions can correspond to very different current levels. Therefore, if the orbital energies and/or tunnel couplings are controlled by, e.g., electrostatic gating, the double quantum dot can act as an exceptionally sensitive electric switch.
Quantum computers have the potential to efficiently solve problems in logistics, drug and material design, finance, and cybersecurity. However, millions of qubits will be necessary for correcting inevitable errors in quantum operations. In this scena rio, electron spins in gate-defined silicon quantum dots are strong contenders for encoding qubits, leveraging the microelectronics industry know-how for fabricating densely populated chips with nanoscale electrodes. The sophisticated material combinations used in commercially manufactured transistors, however, will have a very different impact on the fragile qubits. We review here some key properties of the materials that have a direct impact on qubit performance and variability.
Addressability of spin qubits in a silicon double quantum dot setup in the (1,1) charge configuration relies on having a large difference between the Zeeman splittings of the electrons. When the difference is not sufficiently large, the rotating wave approximation becomes inaccurate. We consider a device working in this regime, with always-on exchange coupling, and describe how a CZ gate and arbitrary one-qubit gates which are robust against charge noise can be implemented by smoothly pulsing the microwave source, while eliminating the crosstalk. We find that the most significant deviations from the rotating wave approximation, which are analogous to the Bloch-Siegert shift in a two-level system, can be compensated using local virtual gates.
376 - K. Takase , S. Tanabe , S. Sasaki 2012
We demonstrate experimentally that graphene quantum capacitance $C_{mathrm{q}}$ can have a strong impact on transport spectroscopy through the interplay with nearby charge reservoirs. The effect is elucidated in a field-effect-gated epitaxial graphen e device, in which interface states serve as charge reservoirs. The Fermi-level dependence of $C_{mathrm{q}}$ is manifested as an unusual parabolic gate voltage ($V_{mathrm{g}}$) dependence of the carrier density, centered on the Dirac point. Consequently, in high magnetic fields $B$, the spectroscopy of longitudinal resistance ($R_{xx}$) vs. $V_{mathrm{g}}$ represents the structure of the unequally spaced relativistic graphene Landau levels (LLs). $R_{xx}$ mapping vs. $V_{mathrm{g}}$ and $B$ thus reveals the vital role of the zero-energy LL on the development of the anomalously wide $ u=2$ quantum Hall state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا