ﻻ يوجد ملخص باللغة العربية
For a compact Lie group G we define a regularized version of the Dolbeault cohomology of a G-equivariant holomorphic vector bundles over non-compact Kahler manifolds. The new cohomology is infinite-dimensional, but as a representation of G it decomposes into a sum of irreducible components, each of which appears in it with finite multiplicity. Thus equivariant Betti numbers are well defined. We study various properties of the new cohomology and prove that it satisfies a Kodaira-type vanishing theorem.
In this paper, we consider a natural map from the Kahler cone to the balanced cone of a Kahler manifold. We study its injectivity and surjecticity. We also give an analytic characterization theorem on a nef class being Kahler.
A special Kahler-Ricci potential on a Kahler manifold is any nonconstant $C^infty$ function $tau$ such that $J( ablatau)$ is a Killing vector field and, at every point with $dtau e 0$, all nonzero tangent vectors orthogonal to $ ablatau$ and $J( abla
We study the (standard) cohomology $H^bullet_{st}(E)$ of a Courant algebroid $E$. We prove that if $E$ is transitive, the standard cohomology coincides with the naive cohomology $H_{naive}^bullet(E)$ as conjectured by Stienon and Xu. For a general Co
We show that, on a complete and possibly non-compact Riemannian manifold of dimension at least 2 without close conjugate points at infinity, the existence of a closed geodesic with local homology in maximal degree and maximal index growth under itera
Let $A Rightarrow M$ be a Lie algebroid. In this short note, we prove that a pull-back of $A$ along a fibration with homologically $k$-connected fibers, shares the same deformation cohomology of $A$ up to degree $k$.