ﻻ يوجد ملخص باللغة العربية
The single layered manganite Pr$_{0.22}$Sr$_{1.78}$MnO$_4$ undergoes structural transition from high temperature tetragonal phase to low temperature orthorhombic phase below room temperature. The orthorhombic phase was reported to have two structural variants with slightly different lattice parameters and Mn-3$d$ levels show orbital ordering within both the variants, albeit having mutually perpendicular ordering axis. In addition to orbital ordering, the orthorhombic variants also order antiferromagnetically with different Neel temperatures. Our magnetic investigation on the polycrystalline sample of Pr$_{0.22}$Sr$_{1.78}$MnO$_4$ shows large thermal hysteresis indicating the first order nature of the tetragonal to orthorhombic transition. We observe magnetic memory, large relaxation, frequency dependent ac susceptbility and aging effects at low temperature, which indicate spin glass like magnetic ground state in the sample. The glassy magnetic state presumably arises from the interfacial frustration of orthorhombic domains with orbital and spin orderings playing crucial role toward the competing magnetic interactions.
Electronic orderings of charges, orbitals and spins are observed in many strongly correlated electron materials, and revealing their dynamics is a critical step toward understanding the underlying physics of important emergent phenomena. Here we use
We present resonant soft X-ray scattering (RSXS) results from small band width manganites (Pr,Ca)MnO$_3$, which show that the CE-type spin ordering (SO) at the phase boundary is stabilized only below the canted antiferromagnetic transition temperatur
We studied the charge-orbital ordering in the superlattice of charge-ordered insulating Pr$_{0.5}$Ca$_{0.5}$MnO$_3$ and ferromagnetic metallic La$_{0.5}$Sr$_{0.5}$MnO$_3$ by resonant soft x-ray diffraction. A temperature-dependent incommensurability
We report the existence of Griffiths phase (GP) and its influence on critical phenomena in layered Sr$_2$IrO$_4$ ferromagnet (T$_C$ = 221.5 K). The power law behavior of inverse magentic susceptibility, 1/$chi$(T) with exponent $lambda = 0.18(2)$ con
We report here a detailed study of AC/DC magnetization and longitudinal/transverse transport properties of La$_{1.2}$Sr$_{1.8}$Mn$_{2}$O$_{7}$ single crystals below $T_{c}$ = 121 K. We find that the resistivity upturn below 40 K is related to the ree