ﻻ يوجد ملخص باللغة العربية
We consider a Cournot oligopoly model where multiple suppliers (oligopolists) compete by choosing quantities. We compare the social welfare achieved at a Cournot equilibrium to the maximum possible, for the case where the inverse market demand function is convex. We establish a lower bound on the efficiency of Cournot equilibria in terms of a scalar parameter derived from the inverse demand function, namely, the ratio of the slope of the inverse demand function at the Cournot equilibrium to the average slope of the inverse demand function between the Cournot equilibrium and a social optimum. Also, for the case of a single, monopolistic, profit maximizing supplier, or of multiple suppliers who collude to maximize their total profit, we establish a similar but tighter lower bound on the efficiency of the resulting output. Our results provide nontrivial quantitative bounds on the loss of social welfare for several convex inverse demand functions that appear in the economics literature.
We consider a two-stage electricity market comprising a forward and a real-time settlement. The former pre-dispatches the power system following a least-cost merit order and facing an uncertain net demand, while the latter copes with the plausible de
The emerging interest in deployment of renewable energy resources (RESs) in smart system represents a great challenge to both system planners and owners of Microgrids (MGs) operators. In this regard, we propose a Tri-level power market models for des
A new framework for nonlinear system identification is presented in terms of optimal fitting of stable nonlinear state space equations to input/output/state data, with a performance objective defined as a measure of robustness of the simulation error
In this work, we study the interaction of strategic agents in continuous action Cournot games with limited information feedback. Cournot game is the essential market model for many socio-economic systems where agents learn and compete without the ful
In this paper, a kind of neural network with time-varying delays is proposed to solve the problems of quadratic programming. The delay term of the neural network changes with time t. The number of neurons in the neural network is n + h, so the struct