ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficiency Loss in a Cournot Oligopoly with Convex Market Demand

180   0   0.0 ( 0 )
 نشر من قبل Yunjian Xu
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a Cournot oligopoly model where multiple suppliers (oligopolists) compete by choosing quantities. We compare the social welfare achieved at a Cournot equilibrium to the maximum possible, for the case where the inverse market demand function is convex. We establish a lower bound on the efficiency of Cournot equilibria in terms of a scalar parameter derived from the inverse demand function, namely, the ratio of the slope of the inverse demand function at the Cournot equilibrium to the average slope of the inverse demand function between the Cournot equilibrium and a social optimum. Also, for the case of a single, monopolistic, profit maximizing supplier, or of multiple suppliers who collude to maximize their total profit, we establish a similar but tighter lower bound on the efficiency of the resulting output. Our results provide nontrivial quantitative bounds on the loss of social welfare for several convex inverse demand functions that appear in the economics literature.



قيم البحث

اقرأ أيضاً

We consider a two-stage electricity market comprising a forward and a real-time settlement. The former pre-dispatches the power system following a least-cost merit order and facing an uncertain net demand, while the latter copes with the plausible de viations with respect to the forward schedule by making use of power regulation during the actual operation of the system. Standard industry practice deals with the uncertain net demand in the forward stage by replacing it with a good estimate of its conditional expectation (usually referred to as a point forecast), so as to minimize the need for power regulation in real time. However, it is well known that the cost structure of a power system is highly asymmetric and dependent on its operating point, with the result that minimizing the amount of power imbalances is not necessarily aligned with minimizing operating costs. In this paper, we propose a mixed-integer program to construct, from the available historical data, an alternative estimate of the net demand that accounts for the power systems cost asymmetry. Furthermore, to accommodate the strong dependence of this cost on the power systems operating point, we use clustering to tailor the proposed estimate to the foreseen net-demand regime. By way of an illustrative example and a more realistic case study based on the European power system, we show that our approach leads to substantial cost savings compared to the customary way of doing.
105 - Mohammd Hamdi 2017
The emerging interest in deployment of renewable energy resources (RESs) in smart system represents a great challenge to both system planners and owners of Microgrids (MGs) operators. In this regard, we propose a Tri-level power market models for des igning demand side management systems to match power supply and shape renewable power generations. We characterize the resulting equilibria in competitive as well as oligopolistic market, and propose distributed demand response algorithms to achieve the equilibria. The models serve as a starting point to include the appliance-level details and constraints for designing practical demand response schemes for smart power grids. In order to show the usefulness of proposed model, two various case studies are considered in this paper: uncoordinated and coordinated load demand. A novel mathematical model is further developed whereby the behavior of RES, in response to different electricity prices owing to demand response programs, is considered in generating the energy consumption of MGs.
A new framework for nonlinear system identification is presented in terms of optimal fitting of stable nonlinear state space equations to input/output/state data, with a performance objective defined as a measure of robustness of the simulation error with respect to equation errors. Basic definitions and analytical results are presented. The utility of the method is illustrated on a simple simulation example as well as experimental recordings from a live neuron.
In this work, we study the interaction of strategic agents in continuous action Cournot games with limited information feedback. Cournot game is the essential market model for many socio-economic systems where agents learn and compete without the ful l knowledge of the system or each other. We consider the dynamics of the policy gradient algorithm, which is a widely adopted continuous control reinforcement learning algorithm, in concave Cournot games. We prove the convergence of policy gradient dynamics to the Nash equilibrium when the price function is linear or the number of agents is two. This is the first result (to the best of our knowledge) on the convergence property of learning algorithms with continuous action spaces that do not fall in the no-regret class.
73 - Ling Zhang , Xiaoqi Sun 2021
In this paper, a kind of neural network with time-varying delays is proposed to solve the problems of quadratic programming. The delay term of the neural network changes with time t. The number of neurons in the neural network is n + h, so the struct ure is more concise. The equilibrium point of the neural network is consistent with the optimal solution of the original optimization problem. The existence and uniqueness of the equilibrium point of the neural network are proved. Application inequality technique proved global exponential stability of the network. Some numerical examples are given to show that the proposed neural network model has good performance for solving optimization problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا