ﻻ يوجد ملخص باللغة العربية
The emerging interest in deployment of renewable energy resources (RESs) in smart system represents a great challenge to both system planners and owners of Microgrids (MGs) operators. In this regard, we propose a Tri-level power market models for designing demand side management systems to match power supply and shape renewable power generations. We characterize the resulting equilibria in competitive as well as oligopolistic market, and propose distributed demand response algorithms to achieve the equilibria. The models serve as a starting point to include the appliance-level details and constraints for designing practical demand response schemes for smart power grids. In order to show the usefulness of proposed model, two various case studies are considered in this paper: uncoordinated and coordinated load demand. A novel mathematical model is further developed whereby the behavior of RES, in response to different electricity prices owing to demand response programs, is considered in generating the energy consumption of MGs.
We consider a smart grid with an independent system operator (ISO), and distributed aggregators who have energy storage and purchase energy from the ISO to serve its customers. All the entities in the system are foresighted: each aggregator seeks to
We consider a two-stage electricity market comprising a forward and a real-time settlement. The former pre-dispatches the power system following a least-cost merit order and facing an uncertain net demand, while the latter copes with the plausible de
We develop an optimization model and corresponding algorithm for the management of a demand-side platform (DSP), whereby the DSP aims to maximize its own profit while acquiring valuable impressions for its advertiser clients. We formulate the problem
We consider an energy system with $n$ consumers who are linked by a Demand Side Management (DSM) contract, i.e. they agreed to diminish, at random times, their aggregated power consumption by a predefined volume during a predefined duration. Their fa
We propose a contextual-bandit approach for demand side management by offering price incentives. More precisely, a target mean consumption is set at each round and the mean consumption is modeled as a complex function of the distribution of prices se