ترغب بنشر مسار تعليمي؟ اضغط هنا

The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Analysis of potential systematics

150   0   0.0 ( 0 )
 نشر من قبل Ashley Ross Dr.
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the density field of galaxies observed by the Sloan Digital Sky Survey (SDSS)-III Baryon Oscillation Spectroscopic Survey (BOSS) included in the SDSS Data Release Nine (DR9). DR9 includes spectroscopic redshifts for over 400,000 galaxies spread over a footprint of 3,275 deg^2. We identify, characterize, and mitigate the impact of sources of systematic uncertainty on large-scale clustering measurements, both for angular moments of the redshift-space correlation function and the spherically averaged power spectrum, P(k), in order to ensure that robust cosmological constraints will be obtained from these data. A correlation between the projected density of stars and the higher redshift (0.43 < z < 0.7) galaxy sample (the `CMASS sample) due to imaging systematics imparts a systematic error that is larger than the statistical error of the clustering measurements at scales s > 120h^-1Mpc or k < 0.01hMpc^-1. We find that these errors can be ameliorated by weighting galaxies based on their surface brightness and the local stellar density. We use mock galaxy catalogs that simulate the CMASS selection function to determine that randomly selecting galaxy redshifts in order to simulate the radial selection function of a random sample imparts the least systematic error on correlation function measurements and that this systematic error is negligible for the spherically averaged correlation function. The methods we recommend for the calculation of clustering measurements using the CMASS sample are adopted in companion papers that locate the position of the baryon acoustic oscillation feature (Anderson et al. 2012), constrain cosmological models using the full shape of the correlation function (Sanchez et al. 2012), and measure the rate of structure growth (Reid et al. 2012). (abridged)



قيم البحث

اقرأ أيضاً

Extraction of the Baryon Acoustic Oscillations (BAO) to percent level accuracy is challenging and demands an understanding of many potential systematic to an accuracy well below 1 per cent, in order ensure that they do not combine significantly when compared to statistical error of the BAO measurement. Sloan Digital Sky Survey (SDSS)-III Baryon Oscillation Spectroscopic Survey (BOSS) SDSS Data Release Eleven (DR11) reaches a distance measurement with $sim 1%$ statistical error and this prompts an extensive search for all possible sub-percent level systematic errors which could be safely ignored previously. In this paper, we analyze the potential systematics in BAO fitting methodology using mocks and data from BOSS DR10 and DR11. We demonstrate the robustness of the fiducial multipole fitting methodology to be at $0.1%-0.2%$ level with a wide range of tests in mock galaxy catalogs pre- and post-reconstruction. We also find the DR10 and DR11 data from BOSS to be robust against changes in methodology at similar level. This systematic error budget is incorporated into the the error budget of Baryon Oscillation Spectroscopic Survey (BOSS) DR10 and DR11 BAO measurements. Of the wide range of changes we have investigated, we find that when fitting pre-reconstructed data or mocks, the following changes have the largest effect on the best fit values of distance measurements both parallel and perpendicular to the line of sight: (a) Changes in non-linear correlation function template; (b) Changes in fitting range of the correlation function; (c) Changes to the non-linear damping model parameters. The priors applied do not matter in the estimates of the fitted errors as long as we restrict ourselves to physically meaningful fitting regions.[abridged]
We present baryon acoustic oscillation (BAO) scale measurements determined from the clustering of 1.2 million massive galaxies with redshifts 0.2 < z < 0.75 distributed over 9300 square degrees, as quantified by their redshift-space correlation funct ion. In order to facilitate these measurements, we define, describe, and motivate the selection function for galaxies in the final data release (DR12) of the SDSS III Baryon Oscillation Spectroscopic Survey (BOSS). This includes the observational footprint, masks for image quality and Galactic extinction, and weights to account for density relationships intrinsic to the imaging and spectroscopic portions of the survey. We simulate the observed systematic trends in mock galaxy samples and demonstrate that they impart no bias on baryon acoustic oscillation (BAO) scale measurements and have a minor impact on the recovered statistical uncertainty. We measure transverse and radial BAO distance measurements in 0.2 < z < 0.5, 0.5 < z < 0.75, and (overlapping) 0.4 < z < 0.6 redshift bins. In each redshift bin, we obtain a precision that is 2.7 per cent or better on the radial distance and 1.6 per cent or better on the transverse distance. The combination of the redshift bins represents 1.8 per cent precision on the radial distance and 1.1 per cent precision on the transverse distance. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. (2016) to produce the final cosmological constraints from BOSS.
The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large scale structure. BOSS uses 1.5 million luminous galaxies as faint as i=19.9 over 10,000 square degrees to measure BAO to redshifts z<0.7. Observations of neutral hydrogen in the Lyman alpha forest in more than 150,000 quasar spectra (g<22) will constrain BAO over the redshift range 2.15<z<3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Lyman alpha forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance D_A to an accuracy of 1.0% at redshifts z=0.3 and z=0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Lyman alpha forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D_A(z) and H^{-1}(z) parameters to an accuracy of 1.9% at z~2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.
We report on the small scale (0.5<r<40h^-1 Mpc) clustering of 78895 massive (M*~10^11.3M_sun) galaxies at 0.2<z<0.4 from the first two years of data from the Baryon Oscillation Spectroscopic Survey (BOSS), to be released as part of SDSS Data Release 9 (DR9). We describe the sample selection, basic properties of the galaxies, and caveats for working with the data. We calculate the real- and redshift-space two-point correlation functions of these galaxies, fit these measurements using Halo Occupation Distribution (HOD) modeling within dark matter cosmological simulations, and estimate the errors using mock catalogs. These galaxies lie in massive halos, with a mean halo mass of 5.2x10^13 h^-1 M_sun, a large scale bias of ~2.0, and a satellite fraction of 12+/-2%. Thus, these galaxies occupy halos with average masses in between those of the higher redshift BOSS CMASS sample and the original SDSS I/II LRG sample.
We present cosmological results from the final galaxy clustering data set of the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. Our combined galaxy sample comprises 1.2 million massive galaxies over an effective ar ea of 9329 deg^2 and volume of 18.7 Gpc^3, divided into three partially overlapping redshift slices centred at effective redshifts 0.38, 0.51, and 0.61. We measure the angular diameter distance DM and Hubble parameter H from the baryon acoustic oscillation (BAO) method after applying reconstruction to reduce non-linear effects on the BAO feature. Using the anisotropic clustering of the pre-reconstruction density field, we measure the product DM*H from the Alcock-Paczynski (AP) effect and the growth of structure, quantified by f{sigma}8(z), from redshift-space distortions (RSD). We combine measurements presented in seven companion papers into a set of consensus values and likelihoods, obtaining constraints that are tighter and more robust than those from any one method. Combined with Planck 2015 cosmic microwave background measurements, our distance scale measurements simultaneously imply curvature {Omega}_K =0.0003+/-0.0026 and a dark energy equation of state parameter w = -1.01+/-0.06, in strong affirmation of the spatially flat cold dark matter model with a cosmological constant ({Lambda}CDM). Our RSD measurements of f{sigma}_8, at 6 per cent precision, are similarly consistent with this model. When combined with supernova Ia data, we find H0 = 67.3+/-1.0 km/s/Mpc even for our most general dark energy model, in tension with some direct measurements. Adding extra relativistic species as a degree of freedom loosens the constraint only slightly, to H0 = 67.8+/-1.2 km/s/Mpc. Assuming flat {Lambda}CDM we find {Omega}_m = 0.310+/-0.005 and H0 = 67.6+/-0.5 km/s/Mpc, and we find a 95% upper limit of 0.16 eV/c^2 on the neutrino mass sum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا