ترغب بنشر مسار تعليمي؟ اضغط هنا

The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample

81   0   0.0 ( 0 )
 نشر من قبل Jeremy Tinker
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present cosmological results from the final galaxy clustering data set of the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. Our combined galaxy sample comprises 1.2 million massive galaxies over an effective area of 9329 deg^2 and volume of 18.7 Gpc^3, divided into three partially overlapping redshift slices centred at effective redshifts 0.38, 0.51, and 0.61. We measure the angular diameter distance DM and Hubble parameter H from the baryon acoustic oscillation (BAO) method after applying reconstruction to reduce non-linear effects on the BAO feature. Using the anisotropic clustering of the pre-reconstruction density field, we measure the product DM*H from the Alcock-Paczynski (AP) effect and the growth of structure, quantified by f{sigma}8(z), from redshift-space distortions (RSD). We combine measurements presented in seven companion papers into a set of consensus values and likelihoods, obtaining constraints that are tighter and more robust than those from any one method. Combined with Planck 2015 cosmic microwave background measurements, our distance scale measurements simultaneously imply curvature {Omega}_K =0.0003+/-0.0026 and a dark energy equation of state parameter w = -1.01+/-0.06, in strong affirmation of the spatially flat cold dark matter model with a cosmological constant ({Lambda}CDM). Our RSD measurements of f{sigma}_8, at 6 per cent precision, are similarly consistent with this model. When combined with supernova Ia data, we find H0 = 67.3+/-1.0 km/s/Mpc even for our most general dark energy model, in tension with some direct measurements. Adding extra relativistic species as a degree of freedom loosens the constraint only slightly, to H0 = 67.8+/-1.2 km/s/Mpc. Assuming flat {Lambda}CDM we find {Omega}_m = 0.310+/-0.005 and H0 = 67.6+/-0.5 km/s/Mpc, and we find a 95% upper limit of 0.16 eV/c^2 on the neutrino mass sum.

قيم البحث

اقرأ أيضاً

We perform a tomographic baryon acoustic oscillations (BAO) analysis using the monopole, quadrupole and hexadecapole of the redshift-space galaxy power spectrum measured from the pre-reconstructed combined galaxy sample of the completed Sloan Digital Sky Survey (SDSS-III) Baryon Oscillation Spectroscopic Survey (BOSS) Data Release (DR)12 covering the redshift range of $0.20<z<0.75$. By allowing for overlap between neighbouring redshift slices, we successfully obtained the isotropic and anisotropic BAO distance measurements within nine redshift slices to a precision of $1.5%-3.4%$ for $D_V/r_d$, $1.8% -4.2%$ for $D_A/r_d$ and $3.7% - 7.5%$ for $H r_d$, depending on effective redshifts. We provide our BAO measurement of $D_A/r_d$ and $H r_d$ with the full covariance matrix, which can be used for cosmological implications. Our measurements are consistent with those presented in citet{Acacia}, in which the BAO distances are measured at three effective redshifts. We constrain dark energy parameters using our measurements, and find an improvement of the Figure-of-Merit of dark energy in general due to the temporal BAO information resolved. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS.
We perform a tomographic baryon acoustic oscillations analysis using the two-point galaxy correlation function measured from the combined sample of BOSS DR12, which covers the redshift range of $0.2<z<0.75$. Splitting the sample into multiple overlap ping redshift slices to extract the redshift information of galaxy clustering, we obtain a measurement of $D_A(z)/r_d$ and $H(z)r_d$ at nine effective redshifts with the full covariance matrix calibrated using MultiDark-Patchy mock catalogues. Using the reconstructed galaxy catalogues, we obtain the precision of $1.3%-2.2%$ for $D_A(z)/r_d$ and $2.1%-6.0%$ for $H(z)r_d$. To quantify the gain from the tomographic information, we compare the constraints on the cosmological parameters using our 9-bin BAO measurements, the consensus 3-bin BAO and RSD measurements at three effective redshifts in citet{Alam2016}, and the non-tomographic (1-bin) BAO measurement at a single effective redshift. Comparing the 9-bin with 1-bin constraint result, it can improve the dark energy Figure of Merit by a factor of 1.24 for the Chevallier-Polarski-Linder parametrisation for equation of state parameter $w_{rm DE}$. The errors of $w_0$ and $w_a$ from 9-bin constraints are slightly improved when compared to the 3-bin constraint result.
We investigate the anisotropic clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12) sample, which consists of $1,198,006$ galaxies in the redshift range $0.2 < z < 0.75$ and a sky coverage of $10,252,$deg$^2$. We an alyse this dataset in Fourier space, using the power spectrum multipoles to measure Redshift-Space Distortions (RSD) simultaneously with the Alcock-Paczynski (AP) effect and the Baryon Acoustic Oscillation (BAO) scale. We include the power spectrum monopole, quadrupole and hexadecapole in our analysis and compare our measurements with a perturbation theory based model, while properly accounting for the survey window function. To evaluate the reliability of our analysis pipeline we participate in a mock challenge, which resulted in systematic uncertainties significantly smaller than the statistical uncertainties. While the high-redshift constraint on $fsigma_8$ at $z_{rm eff}=0.61$ indicates a small ($sim 1.4sigma$) deviation from the prediction of the Planck $Lambda$CDM model, the low-redshift constraint is in good agreement with Planck $Lambda$CDM. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in~citet{Alam2016} to produce the final cosmological constraints from BOSS.
We analyse the broad-range shape of the monopole and quadrupole correlation functions of the BOSS Data Release 12 (DR12) CMASS and LOWZ galaxy sample to obtain constraints on the Hubble expansion rate $H(z)$, the angular-diameter distance $D_A(z)$, t he normalised growth rate $f(z)sigma_8(z)$, and the physical matter density $Omega_mh^2$. We adopt wide and flat priors on all model parameters in order to ensure the results are those of a `single-probe galaxy clustering analysis. We also marginalise over three nuisance terms that account for potential observational systematics affecting the measured monopole. However, such Monte Carlo Markov Chain analysis is computationally expensive for advanced theoretical models, thus we develop a new methodology to speed up our analysis. We obtain ${D_A(z)r_{s,fid}/r_s$Mpc, $H(z)r_s/r_{s,fid}$kms$^{-1}$Mpc$^{-1}$, $f(z)sigma_8(z)$, $Omega_m h^2}$ = ${956pm28$ , $75.0pm4.0$ , $0.397 pm 0.073$, $0.143pm0.017}$ at $z=0.32$ and ${1421pm23$, $96.7pm2.7$ , $0.497 pm 0.058$, $0.137pm0.015}$ at $z=0.59$ where $r_s$ is the comoving sound horizon at the drag epoch and $r_{s,fid}=147.66$Mpc for the fiducial cosmology in this study. In addition, we divide the galaxy sample into four redshift bins to increase the sensitivity of redshift evolution. However, we do not find improvements in terms of constraining dark energy model parameters. Combining our measurements with Planck data, we obtain $Omega_m=0.306pm0.009$, $H_0=67.9pm0.7$kms$^{-1}$Mpc$^{-1}$, and $sigma_8=0.815pm0.009$ assuming $Lambda$CDM; $Omega_k=0.000pm0.003$ assuming oCDM; $w=-1.01pm0.06$ assuming $w$CDM; and $w_0=-0.95pm0.22$ and $w_a=-0.22pm0.63$ assuming $w_0w_a$CDM. Our results show no tension with the flat $Lambda$CDM cosmological paradigm. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS.
We explore the cosmological implications of anisotropic clustering measurements in configuration space of the final galaxy samples from Data Release 12 of the SDSS-III Baryon Oscillation Spectroscopic Survey. We implement a new detailed modelling of the effects of non-linearities, galaxy bias and redshift-space distortions that can be used to extract unbiased cosmological information from our measurements for scales $s gtrsim 20,h^{-1}{rm Mpc}$. We combined the galaxy clustering information from BOSS with the latest cosmic microwave background (CMB) observations and Type Ia supernovae samples and found no significant evidence for a deviation from the $Lambda$CDM cosmological model. In particular, these data sets can constrain the dark energy equation of state parameter to $w_{rm DE}=-0.996pm0.042$ when assumed time-independent, the curvature of the Universe to $Omega_{k}=-0.0007pm 0.0030$ and the sum of the neutrino masses to $sum m_{ u} < 0.25,{rm eV}$ at 95 per cent CL. We explore the constraints on the growth rate of cosmic structures assuming $f(z)=Omega_{rm m}(z)^gamma$ and obtain $gamma = 0.609pm 0.079$, in good agreement with the predictions of general relativity of $gamma=0.55$. We compress the information of our clustering measurements into constraints on the parameter combinations $D_{rm V}(z)/r_{rm d}$, $F_{rm AP}(z)$ and $fsigma_8(z)$ at the effective redshifts of $z=0.38$, $0.51$ and $0.61$ with their respective covariance matrices and find good agreement with the predictions for these parameters obtained from the best-fitting $Lambda$CDM model to the CMB data from the Planck satellite. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. (2016) to produce the final cosmological constraints from BOSS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا