ترغب بنشر مسار تعليمي؟ اضغط هنا

Heat transport of quasi-one-dimensional Ising-like antiferromagnet BaCo_2V_2O_8 in the longitudinal and transverse fields

125   0   0.0 ( 0 )
 نشر من قبل X. F. Sun
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The very-low-temperature thermal conductivity (kappa) is studied for BaCo_2V_2O_8, a quasi-one-dimensional Ising-like antiferromagnet exhibiting an unusual magnetic-field-induced order-to-disorder transition. The nearly isotropic transport in the longitudinal field indicates that the magnetic excitations scatter phonons rather than conduct heat. The field dependence of kappa shows a sudden drop at sim 4 T, where the system unndergoes the transition from the Neel order to the incommensurate state. Another dip at lower field of sim 3 T indicates an unknown magnetic transition, which is likely due to the spin-flop transition. Moreover, the kappa(H) in the transverse field shows a very deep valley-like feature, which moves slightly to higher field and becomes sharper upon lowering the temperature. This indicates a magnetic transition induced by the transverse field, which however is not predicted by the present theories for this low-dimensional spin system.



قيم البحث

اقرأ أيضاً

We report on dc and microwave experiments of the low-dimensional organic conductors (TMTSF)$_2$PF$_6$ and (TMTSF)$_2$ClO$_4$ along the $a$, $b^{prime}$, and $c^*$ directions. In the normal state of (TMTSF)$_2$PF$_6$ below T=70 K, the dc resistivity f ollows a power-law with $rho_a$ and $rho_{b^{prime}}$ proportional to $T^2$ while $rho_{c^*}propto T$. Above $T = 100$ K the exponents extracted from the data for the $a$ and $c^*$ axes are consiste1nt with what is to be expected for a system of coupled one-dimensional chains (Luttinger liquid) and a dimensional crossover at a temperature of about 100 K. The $b^prime$ axis shows anomalous exponents that could be attributed to a large crossover between these two regimes. The contactless microwave measurements of single crystals along the $b^{prime}$-axis reveal an anomaly between 25 and 55 K which is not understood yet. The organic superconductor (TMTSF)$_2$ClO$_4$ is more a two-dimensional metal with an anisotropy $rho_a/rho_{b^{prime}}$ of approximately 2 at all temperatures. Such a low anisotropy is unexpected in view of the transfer integrals. Slight indications to one-dimensionality are found in the temperature dependent transport only above 200 K. Even along the least conducting $c^*$ direction no region with semiconducting behavior is revealed up to room temperature.
292 - S. Kimura , M. Matsuda , T. Masuda 2008
From neutron diffraction measurements on a quasi-1D Ising-like Co$^{rm 2+}$ spin compound BaCo$_{rm 2}$V$_{rm 2}$O$_{rm 8}$, we observed an appearance of a novel type of incommensurate ordering in magnetic fields. This ordering is essentially differe nt from the N{ e}el-type ordering, which is expected for the classical system, and is caused by quantum fluctuation inherent in the quantum spin chain. A Tomonaga-Luttinger liquid (TLL) nature characteristic of the gapless quantum 1D system is responsible for the realization of the incommensurate ordering.
Combining inelastic neutron scattering and numerical simulations, we study the quasi-one dimensional Ising anisotropic quantum antiferromagnet bacovo in a longitudinal magnetic field. This material shows a quantum phase transition from a Neel ordered phase at zero field to a longitudinal incommensurate spin density wave at a critical magnetic field of 3.8 T. Concomitantly the excitation gap almost closes and a fundamental reconfiguration of the spin dynamics occurs. These experimental results are well described by the universal Tomonaga-Luttinger liquid theory developed for interacting spinless fermions in one dimension. We especially observe the rise of mainly longitudinal excitations, a hallmark of the unconventional low-field regime in Ising-like quantum antiferromagnet chains.
BaCo2V2O8 is a nice example of a quasi-one-dimensional quantum spin system that can be described in terms of Tomonaga-Luttinger liquid physics. This is explored in the present study where the magnetic field-temperature phase diagram is thoroughly est ablished up to 12 T using single-crystal neutron diffraction. The transition from the Neel phase to the incommensurate longitudinal spin density wave (LSDW) phase through a first-order transition, as well as the critical exponents associated with the paramagnetic to ordered phase transitions, and the magnetic order both in the Neel and in the LSDW phase are determined, thus providing a stringent test for the theory.
We report on low-temperature heat-transport properties of the spin-1/2 triangular-lattice antiferromagnet Cs$_2$CuCl$_4$. Broad maxima in the thermal conductivity along the three principal axes, observed at about 5 K, are interpreted in terms of the Debye model, including the phonon Umklapp scattering. For thermal transport along the $b$ axis, we observed a pronounced field-dependent anomaly, close to the transition into the three-dimensional long-range-ordered state. No such anomalies were found for the transport along the $a$ and $c$ directions. We argue that this anisotropic behavior is related to an additional heat-transport channel through magnetic excitations, that can best propagate along the direction of the largest exchange interaction. Besides, peculiarities of the heat transport of Cs$_2$CuCl$_4$ in magnetic fields up to the saturation field and above are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا