ﻻ يوجد ملخص باللغة العربية
BaCo2V2O8 is a nice example of a quasi-one-dimensional quantum spin system that can be described in terms of Tomonaga-Luttinger liquid physics. This is explored in the present study where the magnetic field-temperature phase diagram is thoroughly established up to 12 T using single-crystal neutron diffraction. The transition from the Neel phase to the incommensurate longitudinal spin density wave (LSDW) phase through a first-order transition, as well as the critical exponents associated with the paramagnetic to ordered phase transitions, and the magnetic order both in the Neel and in the LSDW phase are determined, thus providing a stringent test for the theory.
The magnetic structure of the spin-chain antiferromagnet SrCo2V2O8 is determined by single-crystal neutron diffraction experiment. The system undergoes magnetic long range order below T_N = 4.96 K. The moment of 2.16{mu}_B per Co at 1.6 K in the scre
In the effective Ising spin-1/2 antiferromagnetic chain system BaCo$_2$V$_2$O$_8, the magnetic-field influence is highly anisotropic. For magnetic fields along the easy axis $c$, the N{e}el order is strongly suppressed already for low fields and an i
We present single-crystal neutron-diffraction data for the spin-chain compound Ca3Co2O6. The intensity and line shapes of the two families of Bragg peaks characterising both the antiferromagnetic and the ferromagnetic components of the magnetic order
The magnetic structure of CsCo2Se2 was investigated using single-crystal neutron diffraction technique. An antiferromagnetic transition with the propagation vector (0,0,1) was observed at T_N = 78 K. The Co magnetic moment 0.772(6) {mu}_B at 10 K poi
The magnetic properties of Co3V2O8 have been studied by single-crystal neutron-diffraction. In zero magnetic field, the observed broadening of the magnetic Bragg peaks suggests the presence of disorder both in the low-temperature ferromagnetic and in