ﻻ يوجد ملخص باللغة العربية
Quantum $k$-core percolation is the study of quantum transport on $k$-core percolation clusters where each occupied bond must have at least $k$ occupied neighboring bonds. As the bond occupation probability, $p$, is increased from zero to unity, the system undergoes a transition from an insulating phase to a metallic phase. When the lengthscale for the disorder, $l_d$, is much greater than the coherence length, $l_c$, earlier analytical calculations of quantum conduction on the Bethe lattice demonstrate that for $k=3$ the metal-insulator transition (MIT) is discontinuous, suggesting a new universality class of disorder-driven quantum MITs. Here, we numerically compute the level spacing distribution as a function of bond occupation probability $p$ and system size on a Bethe-like lattice. The level spacing analysis suggests that for $k=0$, $p_q$, the quantum percolation critical probability, is greater than $p_c$, the geometrical percolation critical probability, and the transition is continuous. In contrast, for $k=3$, $p_q=p_c$ and the transition is discontinuous such that these numerical findings are consistent with our previous work to reiterate a new universality class of disorder-driven quantum MITs.
Classical and quantum conduction on a bond-diluted Bethe lattice is considered. The bond dilution is subject to the constraint that every occupied bond must have at least $k-1$ neighboring occupied bonds, i.e. $k$-core diluted. In the classical case,
The local distribution of exciton levels in disordered cyanine-dye-based molecular nano-aggregates has been elucidated using fluorescence line narrowing spectroscopy. The observation of a Wigner-Dyson-type level spacing distribution provides direct e
We numerically study the level statistics of the Gaussian $beta$ ensemble. These statistics generalize Wigner-Dyson level statistics from the discrete set of Dyson indices $beta = 1,2,4$ to the continuous range $0 < beta < infty$. The Gaussian $beta$
The spectral form factor is a dynamical probe for level statistics of quantum systems. The early-time behaviour is commonly interpreted as a characterization of two-point correlations at large separation. We argue that this interpretation can be too
We study the level-spacing distribution function $P(s)$ at the Anderson transition by paying attention to anomalously localized states (ALS) which contribute to statistical properties at the critical point. It is found that the distribution $P(s)$ fo