ﻻ يوجد ملخص باللغة العربية
Classical and quantum conduction on a bond-diluted Bethe lattice is considered. The bond dilution is subject to the constraint that every occupied bond must have at least $k-1$ neighboring occupied bonds, i.e. $k$-core diluted. In the classical case, we find the onset of conduction for $k=2$ is continuous, while for $k=3$, the onset of conduction is discontinuous with the geometric random first-order phase transition driving the conduction transition. In the quantum case, treating each occupied bond as a random scatterer, we find for $k=3$ that the random first-order phase transition in the geometry also drives the onset of quantum conduction giving rise to a new universality class of Anderson localization transitions.
Quantum $k$-core percolation is the study of quantum transport on $k$-core percolation clusters where each occupied bond must have at least $k$ occupied neighboring bonds. As the bond occupation probability, $p$, is increased from zero to unity, the
We study the Anderson model on the Bethe lattice by working directly with propagators at real energies $E$. We introduce a novel criterion for the localization-delocalization transition based on the stability of the population of the propagators, and
The phase diagram of the random field Ising model on the Bethe lattice with a symmetric dichotomous random field is closely investigated with respect to the transition between the ferromagnetic and paramagnetic regime. Refining arguments of Bleher, R
We study the quantum version of the random $K$-Satisfiability problem in the presence of the external magnetic field $Gamma$ applied in the transverse direction. We derive the replica-symmetric free energy functional within static approximation and t
The coordinate Bethe Ansatz solution of the log-gamma polymer is extended to boundary conditions with one fixed end and the other attached to one half of a one-dimensional lattice. The large-time limit is studied using a saddle-point approximation,an