ترغب بنشر مسار تعليمي؟ اضغط هنا

QED2+1 in graphene: symmetries of Dirac equation in 2+1 dimensions

69   0   0.0 ( 0 )
 نشر من قبل Jagoda Slawinska
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is well-known that the tight-binding Hamiltonian of graphene describes the low-energy excitations that appear to be massless chiral Dirac fermions. Thus, in the continuum limit one can analyze the crystal properties using the formalism of quantum electrodynamics in 2+1 dimensions (QED2+1) which provides the opportunity to verify the high energy physics phenomena in the condensed matter system. We study the symmetry properties of 2+1-dimensional Dirac equation, both in the non-interacting case and in the case with constant uniform magnetic field included in the model. The maximal symmetry group of the massless Dirac equation is considered by putting it in the Jordan block form and determining the algebra of operators leaving invariant the subspace of solutions. It is shown that the resulting symmetry operators expressed in terms of Dirac matrices cannot be described exclusively in terms of gamma matrices (and their products) entering the corresponding Dirac equation. It is a consequence of the reducibility of the considered representation in contrast to the 3+1-dimensional case. Symmetry algebra is demonstrated to be a direct sum of two gl(2,C) algebras plus an eight-dimensional abelian ideal. Since the matrix structure which determines the rotational symmetry has all required properties of the spin algebra, the pseudospin related to the sublattices (M. Mecklenburg and B. C. Regan, Phys. Rev. Lett. 106, 116803 (2011)) gains the character of the real angular momentum, although the degrees of freedom connected with the electrons spin are not included in the model. This seems to be graphenes analogue of the phenomenon called spin from isospin in high energy physics.

قيم البحث

اقرأ أيضاً

267 - C. Quimbay , P. Strange 2013
We show how the two-dimensional Dirac oscillator model can describe some properties of electrons in graphene. This model explains the origin of the left-handed chirality observed for charge carriers in monolayer and bilayer graphene. The relativistic dispersion relation observed for monolayer graphene is obtained directly from the energy spectrum, while the parabolic dispersion relation observed for the case of bilayer graphene is obtained in the non-relativistic limit. Additionally, if an external magnetic field is applied, the unusual Landau-level spectrum for monolayer graphene is obtained, but for bilayer graphene the model predicts the existence of a magnetic field-dependent gap. Finally, this model also leads to the existence of a chiral phase transition.
We consider three-dimensional sQED with 2 flavors and minimal supersymmetry. We discuss various models which are dual to Gross-Neveu-Yukawa theories. The $U(2)$ ultraviolet global symmetry is often enhanced in the infrared, for instance to $O(4)$ or $SU(3)$. This is analogous to the conjectured behaviour of non-supersymmetric QED with 2 flavors. A perturbative analysis of the Gross-Neveu-Yukawa models in the $D = 4 - varepsilon$ expansion shows that the $U(2)$ preserving superpotential deformations of the sQED (modulo tuning mass terms to zero) are irrelevant, so the fixed points with enhanced symmetry are stable. We also construct an example of $mathcal{N} = 2$ sQED with 4 flavors that exhibits enhanced $SO(6)$ symmetry.
In this article we discuss generalized harmonic confinement of massless Dirac fermions in (2+1) dimensions using smooth finite magnetic fields. It is shown that these types of magnetic fields lead to conditional confinement, that is confinement is po ssible only when the angular momentum (and parameters which depend on it) assumes some specific values. The solutions for non zero energy states as well as zero energy states have been found exactly.
81 - Georg Junker 2019
The most general Dirac Hamiltonians in $(1+1)$ dimensions are revisited under the requirement to exhibit a supersymmetric structure. It is found that supersymmetry allows either for a scalar or a pseudo-scalar potential. Their spectral properties are shown to be represented by those of the associated non-relativistic Witten model. The general discussion is extended to include the corresponding relativistic and non-relativistic resolvents. As example the well-studied relativistic Dirac oscillator is considered and the associated resolved kernel is found in a closed form expression by utilising the energy-dependent Greens function of the non-relativistic harmonic oscillator. The supersymmetric quasi-classical approximation for the Witten model is extended to the associated relativistic model.
We consider minimally supersymmetric QCD in 2+1 dimensions, with Chern-Simons and superpotential interactions. We propose an infrared $SU(N) leftrightarrow U(k)$ duality involving gauge-singlet fields on one of the two sides. It shares qualitative fe atures both with 3d bosonization and with 4d Seiberg duality. We provide a few consistency checks of the proposal, mapping the structure of vacua and performing perturbative computations in the $varepsilon$-expansion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا