ترغب بنشر مسار تعليمي؟ اضغط هنا

No spin-localization phase transition in the spin-boson model without local field

66   0   0.0 ( 0 )
 نشر من قبل Mang Feng
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the spin-boson model in a special case, i.e., with zero local field. In contrast to previous studies, we find no possibility for quantum phase transition (QPT) happening between the localized and delocalized phases, and the behavior of the model can be fully characterized by the even or odd parity as well as the parity breaking, instead of the QPT, owned by the ground state of the system. Our analytical treatment about the eigensolution of the ground state of the model presents for the first time a rigorous proof of no-degeneracy for the ground state of the model, which is independent of the bath type, the degrees of freedom of the bath and the calculation precision. We argue that the QPT mentioned previously appears due to unreasonable treatment of the ground state of the model or of the infrared divergence existing in the spectral functions for Ohmic and sub-Ohmic dissipations.


قيم البحث

اقرأ أيضاً

The sub-ohmic spin-boson model is known to possess a novel quantum phase transition at zero temperature between a localised and delocalised phase. We present here an analytical theory based on a variational ansatz for the ground state, which describe s a continuous localization transition with mean-field exponents for $0<s<0.5$. Our results for the critical properties show good quantitiative agreement with previous numerical results, and we present a detailed description of all the spin observables as the system passes through the transition. Analysing the ansatz itself, we give an intuitive microscopic description of the transition in terms of the changing correlations between the system and bath, and show that it is always accompanied by a divergence of the low-frequency boson occupations. The possible relevance of this divergence for some numerical approaches to this problem is discussed and illustrated by looking at the ground state obtained using density matrix renormalisation group methods.
Objectivity constitutes one of the main features of the macroscopic classical world. An important aspect of the quantum-to-classical transition issue is to explain how such a property arises from the microscopic quantum world. Recently, within the fr amework of open quantum systems, there has been proposed such a mechanism in terms of the, so-called, Spectrum Broadcast Structures. These are multipartite quantum states of the system of interest and a part of its environment, assumed to be under an observation. This approach requires a departure from the standard open quantum systems methods, as the environment cannot be completely neglected. In the present work we study the emergence of such a state-structures in one of the canonical models of the condensed matter theory: Spin-boson model, describing the dynamics of a two-level system coupled to an environment made up by a large number of harmonic oscillators. We pay much attention to the behavior of the model in the non-Markovian regime, in order to provide a testbed to analyze how the non-Markovian nature of the evolution affects the surfacing of a spectrum broadcast structure.
Employing a recently proposed measure for quantum non-Markovianity, we carry out a systematic study of the size of memory effects in the spin-boson model for a large region of temperature and frequency cutoff parameters. The dynamics of the open syst em is described utilizing a second-order time-convolutionless master equation without the Markov or rotating wave approximations. While the dynamics is found to be strongly non-Markovian for low temperatures and cutoffs, in general, we observe a special regime favoring Markovian behavior. This effect is explained as resulting from a resonance between the systems transition frequency and the frequencies of the dominant environmental modes. We further demonstrate that the corresponding Redfield equation is capable of reproducing the characteristic features of the non-Markovian quantum behavior of the model.
We study the Husimi distribution of the ground state in the Dicke model of field-matter interactions to visualize the quantum phase transition, from normal to superradiant, in phase-space. We follow an exact numerical and variational analysis, withou t making use of the usual Holstein-Primakoff approximation. We find that Wehrl entropy of the Husimi distribution provides an indicator of the sharp change of symmetry trough the critical point. Additionally, we note that the zeros of the Husimi distribution characterize the Dicke model quantum phase transition.
The passage-time distribution for a spread-out quantum particle to traverse a specific region is calculated using a detailed quantum model for the detector involved. That model, developed and investigated in earlier works, is based on the detected pa rticles enhancement of the coupling between a collection of spins (in a metastable state) and their environment. We treat the continuum limit of the model, under the assumption of the Markov property, and calculate the particle state immediately after the first detection. An explicit example with 15 boson modes shows excellent agreement between the discrete model and the continuum limit. Analytical expressions for the passage-time distribution as well as numerical examples are presented. The precision of the measurement scheme is estimated and its optimization discussed. For slow particles, the precision goes like $E^{-3/4}$, which improves previous $E^{-1}$ estimates, obtained with a quantum clock model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا